Forgot password?
 Register account
View 2370|Reply 5

[不等式] 又一个均值不等式

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2014-12-17 11:31 |Read mode
图中的解答过程中,划横线处系数是2,按照解答看,最后结论不应该也有系数2吗?是题错了,还是解答有问题?
均值不等式1.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-17 14:50
原题没错,解答错了,均值那一步已经放缩过度。

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2014-12-17 15:09
回复 2# kuing

期待修正。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-17 15:17
那还不简单?

由 $x+y+z=0$ 及对称性,可不妨设 $xy\leqslant 0$,则
\begin{align*}
6(x^3+y^3+z^3)^2&=6\bigl(x^3+y^3-(x+y)^3\bigr)^2\\
&=54x^2y^2z^2\\
&=27\abs{xy}\cdot\abs{xy}\cdot 2z^2 \\
&\leqslant (2\abs{xy}+2z^2)^3 \\
&=\bigl(-2xy+(x+y)^2+z^2\bigr)^3 \\
&=(x^2+y^2+z^2)^3.
\end{align*}
根本就不用写那么多东西。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-12-17 15:26
回复 1# guanmo1

由于$x+y+z=0$,可以令$x,y,z$为方程$a^3+pa=q$的三个解
\[\begin{cases}6(x^3+y^3+z^3)^2=6(q-px+q-py+q-pz)^2=6(3q)^2=54q^2\\ (x^2+y^2+z^2)^3=((x+y+z)^2-2(xy+yz+xz))^3=(0-2p)^3=-8p^3\end{cases}\]
由于方程有三个实数解,可知:
\[\frac{p^3}{27}+\frac{q^2}{4}\le 0\]
\[54q^2\le -8p^3\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-17 15:39
回复 5# 战巡

三次判别式也上了,好玩儿……

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit