Forgot password?
 Register account
View 2331|Reply 8

[不等式] 要求用基本不等式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-12-30 08:51 |Read mode
已知实数x,y满足$x^2+xy+y^2=3$,则x+2y的最大值为           .
判别式法知道的。
同事要求用基本不等式,不会。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-12-30 09:16
设x+2y=t,x=t-2y消去x得
\[3(y-\frac{t}{2})^2+\frac{t^2}{4}=3\ge\frac{t^2}{4}\]
\[t\le2\sqrt{3}\]
在$x=0,y=\sqrt{3}$取等号.
不知道怎么修改成基本不等式的办法

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-12-30 12:27
回复 1# realnumber

换元$x=p-q,y=p+q$,之后就可以柯西了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-30 15:03
设实数 $\lambda$ 满足 $2\lambda^2-2\lambda=1$,则
\begin{align*}
\frac{x+2y}2&=\frac{\lambda x+y+(1-\lambda)x+y}2 \\
& \leqslant \sqrt{\frac{(\lambda x+y)^2+\bigl((1-\lambda)x+y\bigr)^2}2} \\
& =\sqrt{\frac{2\lambda^2-2\lambda+1}2x^2+xy+y^2} \\
& =\sqrt{x^2+xy+y^2},
\end{align*}
取等略。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2015-1-7 07:29
齐次化后 居然连均值都可以不用 $\frac{(a+2b)^2}{a^2+ab+b^2}=\frac{a^2+4ab+4b^2}{a^2+ab+b^2}$
情形1:$a=0,b^2=3,a+2b\leqslant 2\sqrt{3}$
情形2:$a\ne0$$\frac{(a+2b)^2}{a^2+ab+b^2}=\frac{a^2+4ab+4b^2}{a^2+ab+b^2}=\frac{1+\frac{4b}{a}+\frac{4b^2}{a^2}}{1+\frac{b}{a}+\frac{b^2}{a^2}}$
$\frac{b}{a}=t$ 上式可化为
$\frac{1+4t+4t^2}{1+t+t^2}=4-\frac{3}{1+t+t^2}<4$
$a+2b< 2\sqrt{3}$

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2015-1-7 07:54
From the given condition,it can be written as
$\frac{(a-b)^2}{4}+\frac{3(a+b)^2}{4}=3$
By Cauchy-Schwarz inequality ,we have
$12=(1+3)\times (\frac{(b-a)^2}{4}+\frac{3(a+b)^2}{4})\geqslant (a+2b)^2$

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2015-1-7 08:59
这种二次型最值早被玩烂啦

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2015-1-9 12:11
回复 7# 爪机专用


    渣

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-1-22 22:44
这种二次型最值早被玩烂啦
爪机专用 发表于 2015-1-7 08:59

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit