Forgot password?
 Register account
View 2011|Reply 2

[不等式] 二元条件最值

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2015-1-5 22:48 |Read mode
已知正数$x,y>0,$且满足$x+y+\sqrt{2x^2+2xy+3y^2}=4$
求$x^2y$的最大值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-1-6 00:32
这个倒简单,系数给得刚刚好
\[x+y+\sqrt{2x^2+2xy+3y^2}=4\riff 2x^2+2xy+3y^2=(4-x-y)^2,\]
展开得
\begin{align*}
16&=x^2+2y^2+8x+8y \\
& =\frac12(x^2+x^2+4y^2)+4(x+x+2y) \\
& \geqslant \frac32\sqrt[3]{4x^4y^2}+12\sqrt[3]{2x^2y},
\end{align*}
下略。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2015-1-7 06:45
Last edited by v6mm131 2015-1-7 06:59回复 2# kuing
very nice还可以写成$(2+\frac{x}{2})^2+(2+\frac{x}{2})^2+(2+y)^2=20$
由均值和郝尔德
$(2+\frac{x}{2})^2+(2+\frac{x}{2})^2+(2+y)^2\geqslant 3[(2+\frac{x}{2})^2(2+y)]^{\frac{2}{3}}\geqslant 3(2+\sqrt[3]{\frac{x^2y}{4}})^2$
下略

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit