Forgot password
 Register account
View 2621|Reply 10

[不等式] 三元不等式

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-1-7 17:13 |Read mode
4)Z`_RQD[6FA$KH%5]BZ6DN.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-13 23:31
话说,允许暴力不?

0

Threads

20

Posts

0

Reputation

Show all posts

睡仙 posted 2015-1-15 16:17
一步法轻松秒杀,当然也可能用均值搞定。

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2015-1-15 17:25
县长弄来看看

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-19 15:18
回复 4# hjfmhh

县长什么时候写过过程?
话说,你先回答我允许暴力不……

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-1-19 15:20
“暴力,允许”围观看得怪怪的。

0

Threads

20

Posts

0

Reputation

Show all posts

睡仙 posted 2015-1-20 09:29
如果包力,直接HOLDER也行

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2015-1-24 19:55
求过程谢谢

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-25 00:57
那我就来暴力了
齐次化等价于
\[\sum\frac{\sqrt{(a+b+c)(a+b)}}{3a+b+c}\geqslant\frac43,\]
由均值有
\[\sqrt{(a+b+c)(a+b)}\geqslant\frac{2(a+b+c)(a+b)}{2a+2b+c},\]
故只需证
\[\sum\frac{(a+b+c)(a+b)}{(2a+2b+c)(3a+b+c)}\geqslant\frac23,\]
去分母完全展开后系数全正,得证。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-1-25 14:13

0

Threads

20

Posts

0

Reputation

Show all posts

睡仙 posted 2015-1-25 18:24
回复 9# kuing

反正都是包力,最后的不等式也可以用CS来弄,呵呵.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:51 GMT+8

Powered by Discuz!

Processed in 0.015652 seconds, 25 queries