Forgot password?
 Register account
View 2611|Reply 10

[不等式] 三元不等式

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-1-7 17:13 |Read mode
4)Z`_RQD[6FA$KH%5]BZ6DN.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-1-13 23:31
话说,允许暴力不?

0

Threads

20

Posts

110

Credits

Credits
110

Show all posts

睡仙 Posted 2015-1-15 16:17
一步法轻松秒杀,当然也可能用均值搞定。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-1-15 17:25
县长弄来看看

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-1-19 15:18
回复 4# hjfmhh

县长什么时候写过过程?
话说,你先回答我允许暴力不……

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2015-1-19 15:20
“暴力,允许”围观看得怪怪的。

0

Threads

20

Posts

110

Credits

Credits
110

Show all posts

睡仙 Posted 2015-1-20 09:29
如果包力,直接HOLDER也行

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-1-24 19:55
求过程谢谢

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-1-25 00:57
那我就来暴力了
齐次化等价于
\[\sum\frac{\sqrt{(a+b+c)(a+b)}}{3a+b+c}\geqslant\frac43,\]
由均值有
\[\sqrt{(a+b+c)(a+b)}\geqslant\frac{2(a+b+c)(a+b)}{2a+2b+c},\]
故只需证
\[\sum\frac{(a+b+c)(a+b)}{(2a+2b+c)(3a+b+c)}\geqslant\frac23,\]
去分母完全展开后系数全正,得证。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-1-25 14:13

0

Threads

20

Posts

110

Credits

Credits
110

Show all posts

睡仙 Posted 2015-1-25 18:24
回复 9# kuing

反正都是包力,最后的不等式也可以用CS来弄,呵呵.

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit