Forgot password
 Register account
View 1114|Reply 4

一道代数题目

[Copy link]

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2015-1-11 15:32 |Read mode
已知实数 $a,b,c$满足$abc=-1,a+b+c=4$,$\dfrac{a}{a^2-3a-1}+\dfrac{b}{b^2-3b-1}+\dfrac{c}{c^2-3c-1}=1$,
求$ a^2+b^2+c^2 $的值。

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-1-11 17:17
回复 1# longzaifei


\[\frac{a}{a^2-3a-1}=\frac{a}{a^2-3a+abc}=\frac{1}{a-3+bc}=\frac{1}{4-b-c-3+bc}=\frac{1}{(b-1)(c-1)}\]
同理得其他两项,于是:
\[\frac{a}{a^2-3a-1}+\frac{b}{b^2-3b-1}+\frac{c}{c^2-3c-1}=\frac{1}{(b-1)(c-1)}+\frac{1}{(a-1)(c-1)}+\frac{1}{(a-1)(b-1)}=1\]
\[a+b+c-3=(a-1)(b-1)(c-1)\]
\[abc-(ab+ac+bc)+a+b+c-1=1\]
\[ab+ac+bc=1\]
\[a^2+b^2+c^2=(a+b+c)^2-2(ab+ac+bc)=14\]

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2015-1-11 20:16
谢谢战巡!!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2015-1-11 22:53
初中竞赛的题目

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2015-1-12 08:24
是的!!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:26 GMT+8

Powered by Discuz!

Processed in 0.012370 seconds, 22 queries