Forgot password
 Register account
View 1545|Reply 6

Find K

[Copy link]

72

Threads

96

Posts

0

Reputation

Show all posts

v6mm131 posted 2015-1-11 18:36 |Read mode
已知实数$a,b,c,k$满足$\frac{a}{b+c}=\frac{2b}{c+a}=\frac{3c}{a+b}=k$ 求$k$的值

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-12 00:15
显然 $a+b+c=0$ 不满足等式,故设 $a+b+c=m\ne0$,令 $a=mx$, $b=my$, $c=mz$,则 $x+y+z=1$,那么
\begin{align*}
\frac a{b+c}=\frac{2b}{c+a}=\frac{3c}{a+b}=k
&\iff \frac x{y+z}=\frac{2y}{z+x}=\frac{3z}{x+y}=k \\
&\iff \frac x{1-x}=\frac{2y}{1-y}=\frac{3z}{1-z}=k,
\end{align*}
解得
\[x=\frac k{k+1},y=\frac k{k+2},z=\frac k{k+3}, \]
所以
\[\frac k{k+1}+\frac k{k+2}+\frac k{k+3}=1,\]
去分母得
\[k^3+3k^2-3=0.\]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2015-1-12 19:48
回复 3# kuing
这个最终解是什么呢?我用软件解这个方程,最后有一个根是$-1+2\cos\frac{\pi}{9}$,是不是方程有什么巧妙的解法呢?或者原题开始就能用三角换元之类的?

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-1-12 20:48
回复 4# abababa


请自己百度卡当公式

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-12 23:08
回复 4# abababa

令 $k=t-1$ 消去二次项,化为 $t^3-3t-1=0$,然后代《数学憋间》总第5期P30三角的那个公式,就可以得到 $k$ 的三个解为
\[k_1=-1 + 2\cos\frac\pi9, k_2=-1 - 2\cos\frac{4\pi}9, k_3=-1 - 2\cos\frac{2\pi}9.\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-12 23:26
噢,其实也可以干脆令 $k=2u-1$ 得
\[4u^3-3u=\frac12,\]
易见 $u\in[-1,1]$,令 $u=\cos\theta$ 则由三倍角公式得
\[\cos3\theta=\frac12,\]
下略。

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2015-1-13 15:33
谢谢,我明白了,消去二次项以后关键是把系数比变成$-\frac{4}{3}$,然后用三倍角公式,正好常数项是特殊角的三角函数值

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-17 01:01 GMT+8

Powered by Discuz!

Processed in 0.015241 seconds, 22 queries