Forgot password
 Register account
View 2397|Reply 4

[函数] 函数零点不等式

[Copy link]

45

Threads

51

Posts

0

Reputation

Show all posts

等待hxh posted 2015-1-13 18:46 |Read mode
Last edited by hbghlyj 2025-3-21 04:45已知 $x_1 \ln x_1=x_2 \ln x_2,\left(x_1<x_2\right)$ ,求证:下列问题
(1)$\frac{2}{e}<x_1+x_2<1$ ;
(2) $1<\sqrt{x_1}+\sqrt{x_2}<\frac{2}{\sqrt{e}}$
(3)若 $x_1^\gamma+x_2^\gamma>1$ 恒成立,求 $r$ 的取值范围;(第三问所求范围为0<r<=ln2,但做的比较繁,寻找简要证法)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-1-13 18:50
凡求简单证法的,将你认为繁的方法贴上来,以免重复劳动。

2

Threads

14

Posts

0

Reputation

Show all posts

weigang99888 posted 2016-1-18 21:28
回复 1# 等待hxh
利用单峰函数的广义对称证明(1)和(2)比较容易

2

Threads

14

Posts

0

Reputation

Show all posts

weigang99888 posted 2016-1-18 21:29
回复 1# 等待hxh
刚加入论坛的

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-1-21 16:47
Last edited by hbghlyj 2025-3-21 04:46令 $f(x)=\frac{\ln (e+x)}{e+x}-\frac{\ln (e-x)}{e-x}(0 \leq x<e)$, 则:
\[
\begin{aligned}
& f'(x)=\frac{1-\ln (e+x)}{(e+x)^2}+\frac{1-\ln (e-x)}{(e-x)^2} \\
& =\frac{\left(e^2+x^2\right)\left[2-\ln \left(e^2-x^2\right)\right]+2 e x \ln \frac{e+x}{e-x}}{\left(e^2-x^2\right)^2}>0 .
\end{aligned}
\]
算晕了。大学里的简单作业题,
放在这用中学数学方法做?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:11 GMT+8

Powered by Discuz!

Processed in 0.016138 seconds, 24 queries