Forgot password
 Register account
View 1227|Reply 1

深圳一模的不等式,也否也能一步到位?

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2015-2-12 09:53 |Read mode
Last edited by isee 2015-2-12 10:04回复 14# kuing


   这一看,放缩的威力无比……不知道,深圳一模的不等式,也否也能一步到位?

   有空,看两眼?题目很长,就不给原题了,最后,就是在正整数范围内,证明

    \[\sum {\dfrac {\ln \left(\frac 1{k^2}+1\right)}{\frac 1{k^2}+1}}<\dfrac 76.\]

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-2-12 10:27
Last edited by 战巡 2015-2-12 10:33回复 15# isee


\[\frac{\ln(1+x)}{1+x}=x-\frac{3}{2}x^2+\frac{11}{6}x^3-o(x^4)<x-\frac{3}{2}x^2+\frac{11}{6}x^3\]
\[\sum_{k=1}^\infty\frac{\ln(\frac{1}{k^2}+1)}{\frac{1}{k^2}+1}<\frac{\ln(2)}{2}+\sum_{k=2}^\infty[\frac{1}{k^2}-\frac{3}{2}\frac{1}{k^4}+\frac{11}{6}\frac{1}{k^6}]\]
\[=\frac{\ln(2)}{2}+\frac{1}{11340}(22\pi^6-189\pi^4+189-\pi^2-15120)\approx 0.8998<\frac{7}{6}\]


直接放大分子好像也可以

\[\sum_{k=1}^\infty\frac{\ln(\frac{1}{k^2}+1)}{\frac{1}{k^2}+1}<\sum_{k=1}^\infty\frac{\frac{1}{k^2}}{\frac{1}{k^2}+1}\]
\[=\sum_{k=1}^\infty\frac{1}{1+k^2}=\frac{1}{2}(\pi\coth(\pi)-1)\approx 1.077<\frac{7}{6}\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:42 GMT+8

Powered by Discuz!

Processed in 0.013476 seconds, 24 queries