|
战巡
Post time 2015-3-5 18:07
回复 1# longzaifei
左边其实就是:
\[\prod_{k=1}^{\infty}k^{\frac{1}{k!}}\]
取对数就变成证明:
\[\sum_{k=1}^{\infty}\frac{\ln(k)}{k!}<\ln(2)\]
由于$\ln(n)$在$n$较大时没有什么很好的同阶无穷大式子,只好动用高端的东西了
易证:
\[\ln(k)<\sum_{i=1}^k\frac{1}{i}=\int_0^1\frac{1-x^k}{1-x}dx\]
有:
\[\sum_{k=1}^{\infty}\frac{\ln(k)}{k!}<\sum_{k=1}^{\infty}\frac{\int_0^1\frac{1-x^k}{1-x}dx}{k!}=\int_0^1\frac{dx}{1-x}\sum_{k=1}^{\infty}\frac{1-x^k}{k!}\]
\[=\int_0^1\frac{dx}{1-x}(e-e^x)\approx 2.16538\]
这个似乎还是大了点,不过没关系,去掉几项就可以了
比如我们从$n=4$开始放大
有
\[\sum_{k=1}^{\infty}\frac{\ln(k)}{k!}<\frac{\ln(2)}{2!}+\frac{\ln(3)}{3!}+\sum_{k=4}^{\infty}\frac{1-x^k}{k!}\]
\[=\frac{\ln(2)}{2!}+\frac{\ln(3)}{3!}+\int_0^1\frac{dx}{1-x}(\frac{x^3}{6}+\frac{x^2}{2}+x-e^x+e-\frac{5}{3})\approx0.6395<\ln(2)\] |
|