Forgot password?
 Register account
View 2104|Reply 5

[不等式] 不等式

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2015-3-5 11:24 |Read mode
如图(最后是≤1)
不等式.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-5 15:16
应该是道老题,不过一时也没找到贴子,还是自己写写吧,反正均值就行了。
令 $x_i=y_i^n$, $y_i>0$,则也有 $y_1y_2\cdots y_n=1$,由均值
\begin{align*}
\frac1{n-1+x_i}&=\frac1{n-1}\left( 1-\frac{x_i}{n-1+x_i} \right) \\
& =\frac1{n-1}\left( 1-\frac{y_i^n}{(n-1)y_1y_2\cdots y_n+y_i^n} \right) \\
& =\frac1{n-1}\left( 1-\frac{y_i^{n-1}}{(n-1)y_1y_2\cdots y_{i-1}y_{i+1}\cdots y_n+y_i^{n-1}} \right) \\
& \leqslant \frac1{n-1}\left( 1-\frac{y_i^{n-1}}{y_1^{n-1}+y_2^{n-1}+\cdots +y_n^{n-1}} \right),
\end{align*}
所以
\[\sum_{i=1}^n\frac1{n-1+x_i}\leqslant \frac1{n-1}\left( n-\sum_{i=1}^n\frac{y_i^{n-1}}{y_1^{n-1}+y_2^{n-1}+\cdots +y_n^{n-1}} \right)=1.
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-5 15:46
PS、写完后让我想起这道题 kkkkuingggg.haotui.com/thread-161-1-8.html 形式像,证法也像

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-3-5 19:39
PS、写完后让我想起这道题  形式像,证法也像
kuing 发表于 2015-3-5 15:46
不能显示公式,显示如下“

[Math Processing Error],有
[Math Processing Error]

来自:bbs.pep.com.cn/thread-1936695-1-1.html

如标题所示,这题FAQ,easy且推广也一样easy,故以下估计也是早被玩腻了的事,所以请勿计较版权,这里扯这只是为个旺字。

已知 [Math Processing Error],则
[Math Processing Error]

proof: 令 [Math Processing Error],则 [Math Processing Error],则由均值不等式,有
[Math Processing Error]

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2015-3-5 21:47
回复 4# 其妙

把显示不出的情况复制过来没意义,显示不出就刷新,刷到出来为止

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2023-8-30 14:07
kuing 发表于 2015-3-5 15:16
应该是道老题,不过一时也没找到贴子,还是自己写写吧,反正均值就行了。
令 $x_i=y_i^n$, $y_i>0$,则也有 ...
原来那个只是这个的一步,这个 n 元的积 1 用幂代换真的第一次见,狠~
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit