Forgot password?
 Register account
View 2229|Reply 6

[不等式] 三个不等式题

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2015-3-6 11:50 |Read mode
Last edited by hbghlyj 2025-3-22 23:301. $a, b, c>0, a+b+c=1$ 证明:若正实数 $x_{i}$ 满足 $x_1 x_2 \cdots x_{m}=1, \prod_{i=1}^n\left(a x_i^2+b x_i+c\right) \geqslant 1$

2.正实数 $a, b, c$ 满足 $ab+bc+ac \leqslant 3 abc$,证明:$\sum \sqrt{\frac{a^2+b^2}{a+b}}+3 \leq \sqrt{2}\left(\sum \sqrt{a+b}\right)$

3.给定 $n \geqslant 2$,求所有 $m \inZ^+$,使得对 $ai \inR+$,满足 $a_1 a_2 \cdots a_{n}=1$,则 $\sum a_i^2 \geq \sum \frac{1}{a_i}$ .

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-6 12:40
1、由 Carlson 不等式显然成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-6 12:41
3、请核对题目

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-6 14:45
第二题还是有点儿难度的,虽然只是几步的功夫。

首先由 \holder 不等式有
\[\left( \sum\frac1{\sqrt{bc+ca}} \right)^2\sum(bc+ca)\geqslant 27,\]
得到
\[\sum\sqrt{\frac{2ab}{a+b}}=\sqrt{2abc}\sum\frac1{\sqrt{bc+ca}}\geqslant \sqrt{2abc}\sqrt{\frac{27}{2(ab+bc+ca)}}=3\sqrt{\frac{3abc}{ab+bc+ca}}\geqslant 3,\]
所以
\begin{align*}
\sum\sqrt{\frac{a^2+b^2}{a+b}}+3&\leqslant \sum\left( \sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{2ab}{a+b}} \right) \\
& \leqslant \sum\sqrt{(1+1)\left( \frac{a^2+b^2}{a+b}+\frac{2ab}{a+b} \right)} \\
& =\sqrt2\sum\sqrt{a+b}.
\end{align*}

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2015-3-6 15:19
Last edited by hbghlyj 2025-3-22 23:31回复 3# kuing
不等式左边是$a_i$的$m$次方

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-3-6 22:15
1、由 Carlson 不等式显然成立。
kuing 发表于 2015-3-6 12:40
叫holder不等式可以不?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-6 22:46
回复 6# 其妙

Carlson 可以是 holder 的推论,所以那样说也没什么问题,不过我觉得还是说“亲近”些的比较好

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit