Forgot password
 Register account
View 1847|Reply 3

[函数] 三角

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-3-10 21:15 |Read mode
LDQ{1WK]TH8X1J11671[I20.png

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2015-3-10 21:21
射影定理中的任意两个关系式推出另外一个,如何证明

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-3-11 06:00
回复 2# hjfmhh


硬来就完了嘛
令$\frac{b}{a}=x, \frac{c}{a}=y$
就有
\[\begin{cases} 1=x\cos(C)+y\cos(B) \\ 1=\frac{y}{x}\cos(A)+\frac{1}{x}\cos(C)\end{cases}\]
得到
\[\begin{cases} x=\frac{\cos(A)+\cos(B)\cos(C)}{\cos(B)+\cos(A)\cos(C)}=\frac{\cos(\pi-B-C)+\cos(B)\cos(C)}{\cos(\pi-A-C)+\cos(A)\cos(C)}=\frac{\sin(B)}{\sin(A)} \\ y=\frac{1-\cos^2(C)}{\cos(B)+\cos(A)\cos(C)}=\frac{\sin^2(C)}{\cos(\pi-A-C)+\cos(A)\cos(C)}=\frac{\sin(C)}{\sin(A)}\end{cases}\]
剩下好办,略过

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2015-3-11 10:50
由A+B+C=pi,x=cosA,y=cosB,z=cosC.
得到:x^2+y^2+z^2+2xyz=1,由a=bz+cy,b=cx+az,得到
a=c(y+xz)/(1-z^2),b=c(x+zy)/(1-z^2),
于是:acosB+bcosA=ay+bx=c(x^2+y^2+2xyz)/(1-z^2)=c.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:19 GMT+8

Powered by Discuz!

Processed in 0.013146 seconds, 25 queries