Forgot password
 Register account
View 1141|Reply 2

向量问题

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2015-3-11 09:56 |Read mode
Last edited by lrh2006 2015-3-11 11:05已知向量a⊥b,|a|=|b|=1,(a-c).(b-c)=0,求向量c与a+b的夹角的取值范围

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2015-3-11 21:18
$a\cdot b=0,|a|=|b|=1,(a-c)\cdot (b-c)=0$
$a\cdot b-(a+b)\cdot c+c\cdot c=0$
$|a+b|\cos\theta=|c|$
$|a+b|=\sqrt{(a+b)\cdot(a+b)}=\sqrt{2}$
$\theta=\arccos\cfrac{|c|}{\sqrt{2}}=[0,\cfrac{\pi}{2})\cup(\cfrac{3\pi}{2},2\pi)$
は。。。对$|c|$没啥约束了吧

138

Threads

743

Posts

3

Reputation

Show all posts

走走看看 posted 2017-10-28 09:29
Last edited by 走走看看 2022-3-5 13:37画图处理后,显示0°到90°,即[0°,90°)。

向量图.PNG
OA=a=e,OB=b=e,OC=c,则CA=a-c,CB=b-c,OK=a+b,
所以OC与OK的夹角为0到90°。

2楼可推导出c的范围。

$由\bm{c}^2-(\bm{a}+\bm{b})\cdot\bm{c}=0得到\bm{c}^2=(\bm{a}+\bm{b})\cdot\bm{c}≤|\bm{a}+\bm{b}|\cdot|\bm{c}|,解得0<|\bm{c}|≤\sqrt{2}。$

另外,向量夹角规定为[0,180°],所以,保留前一部分,舍弃后一部分。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:26 GMT+8

Powered by Discuz!

Processed in 0.012407 seconds, 27 queries