Forgot password?
 Register account
View 1950|Reply 3

[数论] 转发个初中竞赛题

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2015-3-12 10:09 |Read mode
Last edited by hbghlyj 2025-3-18 08:59已知 $p$ 为素数,$m$ 为正整数,且 $2 p^2+p+8=m^2-2m$,求所有的 $(m, p)$.
分析: $2 p^2+p=m^2-2 m-8 \Rightarrow p(2 p+1)=(m-4)(m+2)$.
由 $(m+2)-(m-4)=6$ 得:$p(2 p+1)$ 可分解为相差为 6 的两数的积。
\[
(2 p+1)-p \leq 6 \text { 或 } 2 p-\frac{2 p+1}{2} \leq 6 \text {, 即: } p \leq 5 \text { 或 } p \leq 7 \text {. }
\]
检验可知,只有 "$p=5, ~m=9$" 符合题意。
(谁有别的思路?感觉这种思维不怎么适合初中学生。)

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2015-3-12 14:30

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2015-3-12 15:25
写个大概
由p(2p+1)=(m-4)(m+2)
说明m-4=kp或m+2=kp,(之前先证明k为奇数,k>2,其中k=1时已经得到解),列2组方程组
解得$p=\frac{6k+1}{k^2-2}$>1,k<7又要为整数,检验k=3,k=5后无解

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2015-3-15 16:29
转过来:
(2p+1)p=m²-2m-8=(m-4)(m+2)
分两种情况:
(1) p|m-4,则m-4=n*p,则有2p²+p=n*p*(n*p+6)=n²p²+6np
    ==> 2p+1=n²p+6n ==> p=(6n-1)/(2-n²)
    n=1时,p=5,m=9
    n>1时,p<=0,无解
(2) p|m+2,则m+2=n*p,则有2p²+p=n*p*(n*p-6)=n²p²-6np
    ==> 2p+1=n²p-6n ==> p=(6n+1)/(n²-2)>=2
    ==> 1<=n<=3 ==> 无解


2p²+p+8=m²-2m 若m为偶数,则m²-2m为偶数,则p为偶数,即p=2,此时m²-2m=m(m-2)=18=3*6无解 若m为奇数,设m=2k+1,代入上式得,p(2p+1)=m²-2m-8=4k²-9=(2k-3)(2k+3) 所以有2k-3=np,其中n=1,2,3,.... 代入得p(2p+1)=np(np+6) 即2p+1=n(np+6) 显然n<=1,即n=1 所以2p+1=p+6, 所以p=5 k=4, 所以p=5 m=9(答案唯一)

Mobile version|Discuz Math Forum

2025-6-5 22:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit