Forgot password
 Register account
View 1747|Reply 5

[数列] “提示”是怎么来的?

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2015-3-21 17:48 |Read mode
Last edited by hbghlyj 2025-5-19 21:22两个数列 $\an$ 和 $\bn$ 满足 $b_n=\frac{a_1+2 a_2+\cdots+n a_n}{1+2+\cdots+n}$.
求证:(1)若 $\bn$ 为等差数列,数列 $\an$ 也是等差数列;
(2)若 $\an$ 是等差数列,则数列 $\bn$ 也是等差数列.
提示 :$a_{n+1}-a_n=\frac{3}{2}\left(b_{n+1}-b_n\right)$

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-3-22 23:40
设pn+q试一试行否?

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2015-3-23 22:29
回复 3# 其妙


    那样肯定能证,关键是那个直接得到那个“提示”,直接看出充要性不好搞啊,这个“提示”是通过递推得到的吗?
第1问通过递推不难证明,第2问设An+B,再利用n^2求和的公式能证。问题是那个提示怎么来的呢?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-3-24 00:52
估计那是乱写的。
容易验证 $a_n=2n^2$, $b_n=n(n+1)$ 满足题目的递推关系,但不满足“提示”的公式。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-3-24 00:59
\[b_{n+1}=\frac{a_1+2a_2+\cdots+na_n+(n+1)a_{n+1}}{1+2+\cdots+(n+1)}
=\frac{(1+2+\cdots+n)b_n+(n+1)a_{n+1}}{1+2+\cdots+(n+1)},\]
化简得
\[a_{n+1}=\frac{n+2}2b_{n+1}-\frac n2b_n,\]

\[a_{n+1}-a_n=\frac{n+2}2b_{n+1}-\frac{2n+1}2b_n+\frac{n-1}2b_{n-1}
=\frac{n-1}2(b_{n+1}-2b_n+b_{n-1})+\frac32(b_{n+1}-b_n),\]
也就是说当 \bn 等差时会有“提示”的等式,但这顶多也只能用于证明第(1)问啊

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2015-3-24 14:52
回复 6# kuing


    就是这个意思,但第一问不难得到。那个“提示”有乱写之嫌

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-16 16:15 GMT+8

Powered by Discuz!

Processed in 0.012484 seconds, 24 queries