Forgot password?
 Register account
View 1737|Reply 5

[数列] “提示”是怎么来的?

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2015-3-21 17:48 |Read mode
Last edited by hbghlyj 2025-5-19 21:22两个数列 $\an$ 和 $\bn$ 满足 $b_n=\frac{a_1+2 a_2+\cdots+n a_n}{1+2+\cdots+n}$.
求证:(1)若 $\bn$ 为等差数列,数列 $\an$ 也是等差数列;
(2)若 $\an$ 是等差数列,则数列 $\bn$ 也是等差数列.
提示 :$a_{n+1}-a_n=\frac{3}{2}\left(b_{n+1}-b_n\right)$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-3-22 23:40
设pn+q试一试行否?

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2015-3-23 22:29
回复 3# 其妙


    那样肯定能证,关键是那个直接得到那个“提示”,直接看出充要性不好搞啊,这个“提示”是通过递推得到的吗?
第1问通过递推不难证明,第2问设An+B,再利用n^2求和的公式能证。问题是那个提示怎么来的呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-24 00:52
估计那是乱写的。
容易验证 $a_n=2n^2$, $b_n=n(n+1)$ 满足题目的递推关系,但不满足“提示”的公式。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-24 00:59
\[b_{n+1}=\frac{a_1+2a_2+\cdots+na_n+(n+1)a_{n+1}}{1+2+\cdots+(n+1)}
=\frac{(1+2+\cdots+n)b_n+(n+1)a_{n+1}}{1+2+\cdots+(n+1)},\]
化简得
\[a_{n+1}=\frac{n+2}2b_{n+1}-\frac n2b_n,\]

\[a_{n+1}-a_n=\frac{n+2}2b_{n+1}-\frac{2n+1}2b_n+\frac{n-1}2b_{n-1}
=\frac{n-1}2(b_{n+1}-2b_n+b_{n-1})+\frac32(b_{n+1}-b_n),\]
也就是说当 \bn 等差时会有“提示”的等式,但这顶多也只能用于证明第(1)问啊

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2015-3-24 14:52
回复 6# kuing


    就是这个意思,但第一问不难得到。那个“提示”有乱写之嫌

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit