|
kuing
Posted 2015-3-24 00:59
\[b_{n+1}=\frac{a_1+2a_2+\cdots+na_n+(n+1)a_{n+1}}{1+2+\cdots+(n+1)}
=\frac{(1+2+\cdots+n)b_n+(n+1)a_{n+1}}{1+2+\cdots+(n+1)},\]
化简得
\[a_{n+1}=\frac{n+2}2b_{n+1}-\frac n2b_n,\]
故
\[a_{n+1}-a_n=\frac{n+2}2b_{n+1}-\frac{2n+1}2b_n+\frac{n-1}2b_{n-1}
=\frac{n-1}2(b_{n+1}-2b_n+b_{n-1})+\frac32(b_{n+1}-b_n),\]
也就是说当 \bn 等差时会有“提示”的等式,但这顶多也只能用于证明第(1)问啊 |
|