Forgot password?
 Register account
View 2047|Reply 4

[数列] 2015盐城二模

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2015-3-23 14:57 |Read mode
Last edited by hbghlyj 2025-4-7 01:35已知 $a_n=\frac{1}{n}$ ,
(1)若等差数列 $b_1, b_2, b_3, \cdots, b_n(m \geqslant 3)$ 是 $\left\{a_n\right\}$ 的一个子数列(按原来顺序),且 $b_1=\frac{1}{k}$ ,求证:$m \leqslant k+1$ ;
(2)等比数列 $c_1, ~ c_2, ~ c_3, \cdots, c_m(m \geqslant 3)$ 是 $\left\{a_n\right\}$ 的一个子数列(按原来顺序),求证:$c_1+c_2+\cdots+c_m \leqslant 2-\frac{1}{2^{m-1}}$ .

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-23 21:12
(1)由 $b_1=1/k$,得 $b_2\leqslant 1/(k+1)$,所以公差
\[d=b_2-b_1\leqslant \frac1{k+1}-\frac1k=-\frac1{k(k+1)},\]

\[0<b_m=b_1+(m-1)d\leqslant \frac1k-\frac{m-1}{k(k+1)}=\frac{k+2-m}{k(k+1)},\]
所以 $k+2-m>0$,即 $m\leqslant k+1$;

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-3-23 21:27
(2)设 $c_1=1/k$,则 $c_2\leqslant 1/(k+1)$,所以公比
\[q=\frac{c_2}{c_1}\leqslant \frac k{k+1},\]

\begin{align*}
c_1+c_2+\cdots +c_m&=\frac1k(1+q+\cdots +q^{m-1}) \\
& \leqslant \frac1k\left( 1+\frac k{k+1}+\left( \frac k{k+1} \right)^2+\cdots +\left( \frac k{k+1} \right)^{m-1} \right) \\
& =\frac{k+1}k\left( 1-\left( \frac k{k+1} \right)^m \right) \\
& =1+\frac1k-\frac1{\left( 1+\frac1k \right)^{m-1}} \\
& \leqslant 2-\frac1{2^{m-1}}.
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-4-3 00:18
玩似的,看你么一写

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-3 00:37
回复 4# isee

本来就是玩啊

Mobile version|Discuz Math Forum

2025-5-31 11:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit