Forgot password?
 Register account
View 2102|Reply 4

[几何] 转自人教论坛的两圆连心线上点对两圆切线长之和最大

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-9 01:52 |Read mode
原贴链接:bbs.pep.com.cn/forum.php?mod=viewthread&tid=3116625
原贴发贴人:0.1
题目:
194512qr3k1k5x2zaqx61g.jpg
结论真漂亮,贴中我给出了代数证法:
不妨设圆 $A$, $B$ 半径分别为 $R$, $r$,设 $PM=x$, $PN=y$,则由柯西不等式有
\begin{align*}
PC+PD &= \sqrt{(R+x)^2-R^2}+\sqrt{(r+y)^2-r^2} \\
&= \sqrt{x(x+2R)}+\sqrt{y(y+2r)} \\
&\leqslant \sqrt{(x+y)(x+2R+y+2r)} \\
&= \sqrt{MN(MN+2R+2r)},
\end{align*}
等号成立当且仅当 $(x+2R)/x = (y+2r)/y$,即 $x : y = R : r$,易证此时就是三点共线时。

期待漂亮的几何证法

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-4-9 05:00

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-4-9 10:23
像是反演变换得到的命题。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2015-4-9 12:44
回复 2# 乌贼

牛比

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2015-5-2 00:18
突然发现人教论坛居然也搞禁止外链图片了,唉……

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit