Forgot password?
 Register account
View 2265|Reply 6

[不等式] 不等式

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2015-4-10 09:54 |Read mode
如图
不等式12.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-10 15:32
《数学空间》2011年第4期P24~25中有提及到。

PS、楼主你的图不能裁剪一下么?每次都是下面一大片空白
PS2、题目就那么一行,何不直接输入,贴图都省掉了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-10 15:44
还有,你打漏了变量非负的条件,否则不成立

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-10 16:01
顺便就写个推广命题吧:
设 $a_i\geqslant 0$, $i=1$, $2$, \ldots, $n$,且 $a_1+a_2+\cdots+a_n=n$,记
\[f(a_1,a_2,\ldots,a_n)=a_1a_2\cdots a_n(a_1^2+a_2^2+\cdots+a_n^2),\]

\[f(a_1,a_2,\ldots,a_n)\leqslant n.\]

证明:由于变量的范围均为闭区间,故 $f(a_1,a_2,\ldots,a_n)$ 必然存在最大值,下面用反证法证明取最大值时必然所以变量相等。

首先显然取最大值时不会有变量为零,现假设取最大值时有两个变量不相等,由对称性不妨设 $a_1\ne a_2$,则
\begin{align*}
&f\left(\frac{a_1+a_2}{2},\frac{a_1+a_2}{2},a_3,\ldots,a_n\right) - f(a_1,a_2,a_3,\ldots,a_n)\\
={} & \frac{1}{8}(a_1-a_2)^2a_3a_4\cdots a_n\bigl((a_1-a_2)^2+2(a_3^2+a_4^2+\cdots+a_n^2)\bigr)\\
>{} & 0,
\end{align*}
可见将 $a_1$, $a_2$ 都变成 $(a_1+a_2)/2$ 时原式更大,矛盾,即得证。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-12 15:53
可以证明当$a,b,c > 0$,$a + b + c = 3$时,成立不等式:${a^2}{b^2}{c^2}({a^2} + {b^2} + {c^2}) \leqslant 3$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-12 16:14
可以证明当$a,b,c > 0$,$a + b + c = 3$时,成立不等式:${a^2}{b^2}{c^2}({a^2} + {b^2} + {c^2}) \leqsl ...
其妙 发表于 2015-4-12 15:53
太逗,abc<=1,这比楼主的题还更弱……

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-12 16:39
回复 6# kuing
不会做强的题,那就做弱化的噻,

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit