Forgot password?
 Register account
View 2215|Reply 3

[几何] 解析几何一题-抛物线上的弦

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2015-4-13 10:43 |Read mode
Last edited by realnumber 2015-4-13 11:27AB是抛物线$y^2=4x$上的弦,且长度为定值$m$,当AB移动时,AB中点到y轴最短距离为2,则m=_________.

利用抛物线定义,以及两边之和大于第三边什么的,可以解得m=6.
以下看代数方法:
设直线AB:$x=ty+b,A(x_1,y_1),B(x_2,y_2)$.
由$\abs{AB}=m$,得$m^2=16(t^2+1)(t^2+b),b=\frac{m^2}{16(t^2+1)}-t^2$,
$x_1+x_2=4t^2+2b=2(t^2+1)+\frac{m^2}{8(t^2+1)}-2\ge m-2$----①  (应该再加分类说明,取不到=的情况。)
又AB中点到y轴最短距离为2,即$x_1+x_2\ge 4$
得$m-2=4$,即$m=6$,此时代回①的取等条件,可得$b=1$.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-19 21:27
也来一道解析几何最值问题:
2blog图片.jpg
妙不可言,不明其妙,不着一字,各释其妙!

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2015-4-20 13:21
回复 2# 其妙


    $y\sin{\theta}+x\cos{\theta}=1$,是包络线.
又,说成围成的封闭图形好象不好吧.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-25 16:00
回复 3# realnumber
顶顶更健康,

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit