Forgot password?
 Register account
View 2192|Reply 7

[数列] 请教:一道数列单调性问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2015-4-14 08:12 |Read mode
数列{an}同时满足下面两个条件(下面小括号内的数均为下标):
(1)任意正整数n,a(n)+a(n+1)<2a(n+1)
  (2)存在最小的实数M,使得对任意的正整数n都有a(n)<M
证明:数列{an}是单调递增数列.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2015-4-14 08:19
第一条错误应为(1)任意正整数n,a(n)+a(n+2)<2a(n+1)

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2015-4-14 11:40
不知道这样算不算证明:由第一条即为$a_{n+2}-a_{n+1}<a_{n+1}-a_{n}$
设$b_n=a_{n+1}-a_{n},$即{${b_n}$}单调递减.
显然$a_n=a_1+b_1+\cdots+b_n$
若存在$n_0,b_{n_0}\le 0$,则第2条不成立,
此时$a_n\le min${$a_1,a_2,a_3,\cdots,a_{n_0}$},且等号可以取到.
如此可得对任意n,$b_n>0$,
此时$a_n-a_{n-1}=b_n>0$,所以{$a_n$}为递增数列.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-4-14 12:53
假设存在 $N$ 使 $a_N\geqslant a_{N+1}$,则由 $a_{n+2}-a_{n+1}<a_{n+1}-a_{n}$ 知数列从第 $N+1$ 项起递减,于是 $a_n$ 存在最大值,所以(2)不成立

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-14 23:39
不知道这样算不算证明:由第一条即为$a_{n+2}-a_{n+1}0$,
此时$a_n-a_{n-1}=b_n>0$,所以{$a_n$}为递增数列. ...
realnumber 发表于 2015-4-14 11:40
好像是$a_n=a_1+b_1+\cdots+b_{n-1}$?

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2015-4-15 08:43
ok!简洁。谢谢!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-20 23:46
再来一道数列的单调性问题:
3blog图片.jpg
妙不可言,不明其妙,不着一字,各释其妙!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-4-25 15:59
回复 7# 其妙
顶一顶,

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit