Forgot password?
 Register account
View 2229|Reply 4

[数列] 数列

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-4-23 16:32 |Read mode
VB]MV0FZ2M]T(8FP46DU@9V.png

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2015-4-24 09:36
可以说下题目来源吗?原题是这样吗?这个数列增加非常快.

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-4-24 11:25

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2015-4-24 11:25
我看不懂他的意思

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2015-4-24 17:08
回复 1# hjfmhh


令$b_n=\frac{a_n}{2}$
易证:
\[b_{n+1}=b_{n-1}b_n+\sqrt{(b_{n-1}^2-1)(b_n^2-1)}\]
令:
\[\begin{cases}b_{n-1}=\cosh(p) \\ b_n=\cosh(q) \end{cases}\]
\[b_{n+1}=\cosh(p)\cosh(q)+\sinh(p)\sinh(q)=\cosh(p+q)\]
因此有:
\[\cosh^{-1}(b_{n+1})=p+q=\cosh^{-1}(b_{n-1})+\cosh^{-1}(b_n)\]
剩下不用说了吧

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit