Forgot password
 Register account
View 2244|Reply 4

[数列] 数列

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-4-23 16:32 |Read mode
VB]MV0FZ2M]T(8FP46DU@9V.png

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-4-24 09:36
可以说下题目来源吗?原题是这样吗?这个数列增加非常快.

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2015-4-24 11:25

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2015-4-24 11:25
我看不懂他的意思

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-4-24 17:08
回复 1# hjfmhh


令$b_n=\frac{a_n}{2}$
易证:
\[b_{n+1}=b_{n-1}b_n+\sqrt{(b_{n-1}^2-1)(b_n^2-1)}\]
令:
\[\begin{cases}b_{n-1}=\cosh(p) \\ b_n=\cosh(q) \end{cases}\]
\[b_{n+1}=\cosh(p)\cosh(q)+\sinh(p)\sinh(q)=\cosh(p+q)\]
因此有:
\[\cosh^{-1}(b_{n+1})=p+q=\cosh^{-1}(b_{n-1})+\cosh^{-1}(b_n)\]
剩下不用说了吧

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:17 GMT+8

Powered by Discuz!

Processed in 0.013693 seconds, 25 queries