Forgot password
 Register account
View 2174|Reply 2

[函数] 请教一道函数不等式

[Copy link]

2

Threads

9

Posts

0

Reputation

Show all posts

luren8asdf posted 2015-4-24 07:53 |Read mode
20150424_075043.jpg

高手帮看看这道题

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-4-24 12:38
回复 1# luren8asdf


易证$k>1$
又易证:
\[\begin{cases} e^x>1+x+\frac{x^2}{2}, x>0 \\ e^x<1+x+\frac{x^2}{2}, x<0\end{cases}\]
令$x_1<x_2$,显然$-1<x_1<0<x_2$
因此有:
\[\begin{cases} e^{x_1}=k(x_1+1)<1+x_1+\frac{x_1^2}{2} \\ e^{x_2}=k(x_2+1)>1+x_2+\frac{x_2^2}{2} \end{cases}\]
然后:
\[\begin{cases}-1<x_1<k-1-\sqrt{k^2-1}\\ 0<x_2<k-1+\sqrt{k^2-1}\end{cases}\]
\[\begin{cases}0<x_1+1<k-\sqrt{k^2-1}\\ 1<x_2+1<k+\sqrt{k^2-1}\end{cases}\]
\[(x_1+1)(x_2+1)<(k-\sqrt{k^2-1})(k+\sqrt{k^2-1})=1\]
\[x_1+x_2=\ln(k(x_1+1))+\ln(k(x_2+1))=2\ln(k)+\ln((x_1+1)(x_2+1))<2\ln(k)\]

另一方面,易证:
\[\begin{cases} \frac{e^x}{x+1}<1+\frac{x^2}{2}, x>0 \\ \frac{e^x}{x+1}>1+\frac{x^2}{2}, x<0\end{cases}\]
\[\begin{cases} \frac{e^{x_1}}{x_1+1}=k>1+\frac{x_1^2}{2} \\ \frac{e^{x_2}}{x_2+1}=k<1+\frac{x_2^2}{2} \end{cases}\]
两式相减得到
\[\frac{x_2^2}{2}-\frac{x_1^2}{2}=\frac{1}{2}(x_2-x_1)(x_2+x_1)>0\]
\[x_1+x_2>0\]

2

Threads

9

Posts

0

Reputation

Show all posts

original poster luren8asdf posted 2015-4-25 08:01
第二部分开头的不等式有一点点疑问

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:30 GMT+8

Powered by Discuz!

Processed in 0.074961 seconds, 25 queries