Forgot password
 Register account
View 6115|Reply 18

[函数] 来自人教群的 $(e^x-1)\ln(x+1)\ge x^2$

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-4-24 14:25 |Read mode
Last edited by hbghlyj 2025-4-6 23:25
新G学生李(2408****) 9:17:46
\[
\forall x \geqslant 0, \quad\left(e^x-1\right) \ln (x+1) \geqslant x^2
\]
这个怎么证明?

粤A爱好者kuing✈(249533164) 10:57:05
kuing 20:39:04
\[\frac{\ln(x+1)}x\geqslant\frac2{2+x}\geqslant\frac x{e^x-1}\]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-5-18 18:03
Last edited by hbghlyj 2025-5-18 11:57$\ln(x+1)(e^x-1)≥x^2$,其中x≥0
硬求导好几次,已经获知移项后的函数为增。寻求简洁的方法!

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2015-4-24 14:28
后面那详细证明就懒得写了,纯粹记录一下而已。

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2016-5-19 08:54
Last edited by hbghlyj 2025-5-18 11:56查下相关解答,此解法也很优等!
$\ln(x+1)/x>=x/(e^x-1),$
$x/(e^x-1)=\ln(e^x-1+1)/(e^x-1);$
易知:$e^x-1>x$
所以只需证:y=ln(x+1)/x在x>0为减函数(前面第一小问已经证出)。
请问高手:$e^x>=1+x及e^x>1+x+x*2/2$不难想出;
ln(1+x)<=x也不难,但lnx>=2(1-x)/(1+x)等类反比例函数是如何观察出的?图像?

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2016-5-19 10:27
Last edited by hbghlyj 2025-5-18 11:56用反函数和对称性的那个方法的确很强,也很简便。

未命名.PNG

函数$y=\ln(x+1)$ 和 $y=e^x-1$ 在原点处的切线都是 $y=x$
而它们互为反函数,点$T$在 $y=e^x-1$ 上,$TE \perp x$轴 交$y=x$于$P$,交 $y=\ln(x+1)$  于$E$。$F$是$E$关于$y=x$的对称点。

于是 $k_{OT}\cdot k_{OE}>k_{OF}\cdot k_{OE}=1$,化简即是$\frac{e^x-1}{x} \cdot \frac{\ln (x+1)}{x}>1(x>0)$

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-4-26 21:13
kuing,中间2/(2+x)是如何得到的?求指教

1

Threads

31

Posts

0

Reputation

Show all posts

test posted 2015-4-26 22:02
回复 4# hjfmhh

你把右边证明一下就知道了

4

Threads

6

Posts

0

Reputation

Show all posts

霏霏 posted 2015-4-26 22:07
2015广东佛山一模

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-4-28 15:17
这个不知证明问题,构造是关键

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2015-4-28 15:21
我意思是你从右边的证明中就可以知道我是怎么想出来的

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-5-1 06:24
还可以用反函数方法证明

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-5-3 23:20

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-5-4 12:54
在x=0处无定义,为什么还有切线呢

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2015-5-4 14:07
可去间断点

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-5-6 08:24
我觉得可以专门写一贴关于如何找出一些复杂函数的多项式函数上下限

比如$x\ge 0$时
\[x-\frac{x^2}{2}\le \ln(1+x)\le x\]
又比如
\[e^x-1\ge x+\frac{x^2}{2}+\frac{x^3}{6}\]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-5-8 20:15
这些是大学泰勒展开

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2015-5-9 02:10
回复 15# hjfmhh

别老去区分什么高中大学,什么超纲不超纲,知识就是知识,能解决问题就是王道!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2015-5-9 18:20
$\ln$写的很标准

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2015-5-9 20:51
回复 17# Tesla35

585好久不来一来就水

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:20 GMT+8

Powered by Discuz!

Processed in 0.015416 seconds, 29 queries