Forgot password?
 Register account
View 2078|Reply 2

[几何] 怎么证明截面最大问题.

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2015-5-8 09:17 |Read mode
QQ截图2015050809094ppppp.jpg
四面体ABCD中,$\abs{AB}=4,\abs{CD}=2,\angle{ACB}=\angle{ADB}=60\du$,又$AB⊥面CDE$,$E$为$AB$上垂足,求
三角形ECD面积的最大值.










答案很容易猜到,图象也可以想象,是球缺内一动弦CD.证明碰到麻烦了.当E在AB延长线上时,....。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2015-5-8 10:10
当E在AB上时,若$EC>ED$,则$\angle{ACE}<\angle{ADE},\angle{BCE}<\angle{BDE}$,两式相加,与$\angle{ACB}=\angle{ADB}=60\du$矛盾.
所以设$\abs{EC}=\abs{ED}=h,\abs{AD}=\abs{AC}=a,\abs{BD}=\abs{BC}=b$,
那么$a^2+b^2-2ab\cos{60\du}=16,S_{ΔABC}=2h=0.5ab\sin{60\du},S_{ΔECD}=0.5\sqrt{h^2-1}$,由此可得最大值.
当E在AB延长线上时,不好写...

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-5-10 10:14
未命名.jpg

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit