Forgot password
 Register account
View 2422|Reply 5

[几何] 来自人教论坛的四边形对角线最大值

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-5-11 19:06 |Read mode
原贴链接:bbs.pep.com.cn/forum.php?mod=viewthread&tid=3117886
题目:
2248111udxopxaop6uczhc.png
这里写一下原贴2#的
黄金分割日 发表于 2015-5-10 23:52
托勒密不等式立得
的过程。
设 $BC=a$,则 $AC=2a$, $AB=\sqrt5a$,由托勒密不等式有
\[BD\leqslant \frac{AB\cdot CD+BC\cdot AD}{AC}=\frac{\sqrt5a\cdot 3+a\cdot \sqrt5}{2a}=2\sqrt5,\]
当 $A$, $B$, $C$, $D$ 四点共圆时取等,这显然是可以取到的,因为 $\angle ADC$ 可以任取。

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2015-5-11 19:08
@乌贼 来个纯几何解法?

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-12 13:55
Last edited by 乌贼 2015-5-12 18:48回复 2# kuing
等价于:定线段$DC=\sqrt{5}$,圆$D$,半径$AD=3$,$A$为圆上动点,以$AC$为边长向外作正方形$ACEF$,$CE$中点即是$B$点。
如图,以$DC$为边长作正方形$DCMN$,取$CM,AC,DC$中点$O,P,Q$,有\[ \triangle CBO\cong \triangle CPQ \]有\[ OB=PQ=\dfrac12AD=\dfrac{\sqrt5}{2} \]有$B$点的轨迹是以$O$为圆心,$\dfrac{\sqrt5}{2}$为半径的圆,故……
211.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-12 14:06
Last edited by 乌贼 2015-5-12 18:52回复 3# 乌贼

取值范围$ [ \sqrt2,2\sqrt5  ] $

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2015-5-12 14:21
图似乎可以简化些。
其实用一句话来说就是旋转位似变换

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-12 18:38
回复 6# 活着&存在
奥,数字搞错,已改。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.013417 seconds, 27 queries