Forgot password
 Register account
View 2598|Reply 11

[数列] 数列

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2015-5-18 22:35 |Read mode
Last edited by lrh2006 2015-5-19 10:46设集合An={x|2^n<x<2^(n+1),且x=4m+3,m、n∈N*},则An中各元素之和为Sn= ?

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-5-18 23:45
回复 1# lrh2006


    2n+l,l是什么?缺少"}",
还是核对下题目.

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2015-5-19 07:24
回复 2# realnumber


    已经改过了。不好意思,复制粘贴过来的时候,出问题了,没有注意到

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-5-19 07:52
还没解释2楼的问题....,
继续改?

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2015-5-19 10:47
回复 4# realnumber


    晕,复制粘贴过来怎么面目全非,对不起,我大意了,现在应该没问题了吧?
活着&存在 posted 2015-5-19 12:35
n≥2,s=(2^n+3)+(2^n+7)+…+[2^(n+1)-1];
n=1,A=Φ

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-5-19 13:19
晕,复制粘贴过来怎么面目全非,对不起,我大意了,现在应该没问题了吧 ...
lrh2006 发表于 2015-5-19 10:47
从哪里粘贴过来会变成那样子?

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-19 14:33
Last edited by 乌贼 2015-5-19 14:51首项为$ 2^n+3 $,公差为$ 4 $,项数为$ 2^{n-2} $($ n\geqslant 2 $)的等差数列之和

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2015-5-19 15:23
回复 8# 乌贼


    对,我也是这么想的,可是答案对不上,你能不能算一下?参考答案是[3乘以2^(2n-2)]+2^(n-2),我算出来是[3乘以2^(2n-3)]+2^(n-2)

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2015-5-19 15:24
回复 7# kuing


    就是网上的那些word文档木

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-19 16:03
回复 9# lrh2006
你不会验算一下,$n=3,S_n=11+15$,而\[3\times 2^4+2=50\]\[3\times 2^3+2=26\]

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2015-5-19 17:15
回复 11# 乌贼


    啊,我真傻,怎么没想到,谢谢咯!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:38 GMT+8

Powered by Discuz!

Processed in 0.016336 seconds, 24 queries