Forgot password?
 Register account
View 2252|Reply 8

[几何] 来自人教群的简单几何又故意用托勒密

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-19 17:47 |Read mode
渝X爱好者学习(3308*****)  15:07:14
QQ图片20150519174758.png
请教一下上面的问题,谢谢

粤A爱好者kuing(249533164)  15:11:23
由托勒密不等式有 OC*AB <= OA*BC + OB*AC = 2AB,所以 OC <= 2,当 OABC 四点共圆时取等。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-5-19 18:55
嘿,难得有一道偶一眼就可以用均值解决的题呢。

设正方形的边长为2$a$,则\[OC=\sqrt {1-a^2}+\sqrt 3 a\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-5-19 18:58
Last edited by isee 2015-5-19 19:31而\[\dfrac {OC}4=\dfrac {\sqrt {1-a^2}+\sqrt 3a/3+\sqrt 3a/3+\sqrt 3a/3}4\leqslant \sqrt {\dfrac {1-a^2+a^2/3+a^2/3+a^2/3}{4}}=\dfrac 12\]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-5-19 18:59
以$ AO $为边长作正$ \triangle AOD $,有$ D $点在圆$ O $上,\[ \triangle AOB\cong \triangle ADC \]有$ C $点的轨迹是以$ D $为圆心,$ OB $为半径的圆,$ O $点在圆$ D $上,$ OC $为圆$ D $上的弦,故\[ OC\leqslant 2 \]
211.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-5-19 19:01
回复 4# 乌贼


    这是当然是初中旋转(可以说是随意)解法。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-5-19 19:04
这种往往直接以最长的,显得更加简洁(当然,此题里都一样),如以C旋转中心,旋转三角形OCA。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-5-19 23:47
回复 2# isee
设等边三角形的边长为$2a$ ,则由柯西不等式得,$|OC|=\sqrt{1-a^2}+\sqrt3a\leqslant\sqrt{(1+3)(1-a^2+a^2)}=2$。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2015-5-20 00:58
回复 4# 乌贼

可以写得简单些啊,什么轨迹什么的都不需要,就作正边得全等然后OC<=OD+DC=2,一行就完了。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-5-20 01:02
回复 8# kuing
思路不一样啊,你的是三角形两边和大于第三边。

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit