Forgot password?
 Register account
View 2321|Reply 5

[几何] 一道轨迹题的取值范围

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2015-5-26 07:47 |Read mode
Last edited by hbghlyj 2025-4-6 04:15(黑龙江省大庆实验中学 2013 届高三下学期开学考试数学(理)试题)$F_1, F_2$ 是双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左右焦点,点 $P$ 在双曲线左支上不同于左顶点的任意一动点,圆 $Q$ 与线段 $P F_1$ 延长线,线段 $P F_2$ 延长线,线段 $F_1 F_2$ 均相切,则圆心 $Q$ 的轨迹方程是
一道双曲线题.PNG

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-26 13:17
因为 $TF_2$ 为定值,故 $TQ$ 随 $\angle TF_2Q$ 减小而减小,亦即随 $\angle TF_2S$ 减小而减小,亦即随 $\angle PF_2T$ 增大而减小,所以 $P$ 越远 $TQ$ 越小,当 $P$ 趋向无穷远时 $TQ$ 趋向下确界,此时 $PQ$ 趋向渐近线,下略。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-26 14:33
或者这样看,由于 $PQ$ 平分 $\angle F_1PF_2$,所以也是双曲线的切线,于是直线 $PQ$ 必与两渐近线相交,且两交点分别在二、三象限内,如图
QQ截图20150526142808.gif
故此 $Q$ 不可能在渐近线之间那段上,而当 $P$ 无穷远时 $PQ$ 就是渐近线,故……

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2015-5-27 08:22
我觉得,y的范围应该是y<-b或y>b

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-27 15:39
回复 4# longma

渐近线与x=a交于(a,+-b)所以你是正确的

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2015-5-27 19:38

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit