Forgot password
 Register account
View 3170|Reply 11

[几何] 圆锥曲线一小题+

[Copy link]

34

Threads

98

Posts

0

Reputation

Show all posts

hongxian posted 2015-5-28 23:16 |Read mode
Last edited by hbghlyj 2025-5-4 00:51已知 $P$ 为椭圆 $\frac{x^2}{4}+y^2=1$ 的左顶点.如果存在过点 $M\left(x_0, 0\right),\left(x_0>0\right)$ 的直线交椭圆于 $A, ~ B$ 两点,使得 $S_{\triangle A O B}=2 S_{\triangle A O P}$ ,则 $x_0$ 的取值范围为(1,2)
变圆好象可以,不知有没有其它方法,谢谢了!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-5-29 00:06
变圆有什么用?
转化与化归 posted 2015-5-29 10:10
Last edited by hbghlyj 2025-5-4 00:50取 $x_0=\sqrt{5}+1, \quad M(\sqrt{5}+1,0), A\left(\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right), B(0,1)$,此时 $S_{\triangle A O B}=2 S_{\triangle A O P^{+}}$
条件完整吗?

34

Threads

98

Posts

0

Reputation

Show all posts

original poster hongxian posted 2015-5-29 10:13
回复 2# kuing

$OA$的长度可以变成定值
活着&存在 posted 2015-5-29 10:21
未命名.JPG
活着&存在 posted 2015-5-29 10:59
Last edited by 活着&存在 2015-5-29 11:11 未命名.JPG

x=4/(1+3OG/OA)
活着&存在 posted 2015-5-29 11:23
Last edited by 活着&存在 2015-5-29 12:13 未命名.JPG

x=4/(OG/OA-1)

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-29 16:57
如图,$ B $为椭圆上任一点,$ O_1(4,0) $,四边形$ O_1OAC$与四边形$O_1OBD $为平行四边形,$ BA $延长线交$ x $轴于$ M $,$ DO $延长线交椭圆于$ A_1 $,$ BA_1 $交$ x $轴于$ M_1 $,有\[ \triangle BCA\sim \triangle BO_1M \]得\[ 0<\dfrac{BC}{BO_1}=\dfrac{AC}{O_1M} <\dfrac23\]\[ OM>2 \]又\[ \triangle A_1M_1O \sim \triangle A_BD\]得\[ \dfrac14<\dfrac{OM_1}{DB}=\dfrac{A_1O}{AD} <\dfrac12\]\[ 1<OM_1<2 \]
综上$ X_0 $的取值范围$ (1,2) \cup (2,\infty ) $
211.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2015-5-29 17:09
回复 8# 乌贼
\[ S_{\triangle O_1OA}=S_{\triangle BOA}=2\cdot S_{\triangle POA} \]\[ S_{\triangle O_1OA_1}=S_{BOA_1}=2\cdot S_{POA_1} \]

34

Threads

98

Posts

0

Reputation

Show all posts

original poster hongxian posted 2015-5-29 20:57
Last edited by hongxian 2015-5-29 21:03变圆一:
变圆$\dfrac{x^2}{4}+\dfrac{y^2}{4}=1$,$Q(4,0)$,$M(m,0)$,$BQ\px OA\Longrightarrow\triangle MOA\sim\triangle MQB\Longrightarrow\dfrac{QB}{OA}=\dfrac{QM}{OM}\Longrightarrow QB=\dfrac{2(4-m)}{m}\in(2,6)\Longrightarrow m\in(1,2)$
变圆二:
变圆$\dfrac{x^2}{4}+\dfrac{y^2}{4}=1$,$Q(-4,0)$,$M(m,0)$,$BQ\px OA\Longrightarrow\triangle MOA\sim\triangle MQB\Longrightarrow\dfrac{QB}{OA}=\dfrac{QM}{OM}\Longrightarrow QB=\dfrac{2(4+m)}{m}\in(2,6)\Longrightarrow m\in(2,+\infty )$
截图00.png 截图01.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-5-29 22:25
各种牛笔
活着&存在 posted 2015-6-1 12:40
未命名.JPG

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:49 GMT+8

Powered by Discuz!

Processed in 0.013734 seconds, 29 queries