Forgot password?
 Register account
View 2443|Reply 7

[数列] 是否存在等差数列$\an$使得$a_1^5+a_2^5+\cdots+a_n^5=4S_n^3$

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2015-5-30 20:53 |Read mode
是否存在等差数列\(a_n\)使得\[{a_1}^5 + {a_2}^5 +  \ldots  + {a_n}^5 = 4{S_n}^3\]

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2015-5-30 21:03
回复 1# 青青子衿


明显存在啊,$a_n=0$就完事了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-30 22:10
我改了下标题公式的格式

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2015-5-31 15:02
回复 2# 战巡
搜狗截图20150530203209.png
不知对不对?
$a_2=\pm\sqrt{8\pm\sqrt{34}}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-31 22:51
回复 4# 青青子衿

倒数第5行有问题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-31 23:00
回复 4# 青青子衿

噢,是等价的,那步没错。
不过你推出的只是当数列为正时 $d=\sqrt3$ 是一个必要条件,但你还要验证它的充分性,然而,代入后发现还是不成立的。
这题只有2#满足。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-2 23:17
本来问题是:
已知$a_1^3+a_2^3+\cdots+a_n^3=tS_n^2$,其中$S_n$是数列$\{a_n\}$的前$n$项和,$t$是常数,求$a_n$.

2

Threads

57

Posts

388

Credits

Credits
388

Show all posts

caijinzhi Posted 2015-6-28 10:22
回复 7# 其妙
如果是t=1的话 让我想到了 立方的求和公式……

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit