Forgot password?
 Register account
View 2086|Reply 5

[函数] 2015年安徽卷理科第10题:三角函数

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-6-7 17:45 |Read mode
正是周末,看到群里有试卷,先抛砖咯……

2015年安徽卷第10题:
ahui10l.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-6-7 17:49
Last edited by isee 2015-6-7 18:44文字如下(看不太清, 不过,大方向不会错了):

安徽卷理科第10题:

已知函数$f(x)=A \sin (\omega x+\varphi)$($A,\omega,\varphi$均为正的常数)的最小正周期为$\pi,$当$x=\dfrac {2\pi}3$时,函数$f(x)$取得最小值,则下列结论正确的是

    A. $f(2)<f(-2)<f(0)$
    B.……



iC个人简解:由已知,容易得到$f(x)=A \sin (2x+\varphi)$.

又依题设,不防令$A=1$,则解析式可以简化为$f(x)=\sin (2x+\varphi)$.

又$f\left(\dfrac {2\pi}3\right)_\min=-1$(且最小正周期为$\pi$),$\dfrac {2\pi}3 \in \left(0,\pi\right)$.

于是有$$2\cdot\dfrac {2\pi}3+\varphi=\dfrac {3\pi}2\Rightarrow \varphi=\frac \pi6>0$$


从而$f(x)=\sin \left(2x+\dfrac \pi 6\right)$.


下面的过程不用写了,结果是 $$f(2)<f(-2)<f(0)$$







事实上,上面的解析式跟A一样,并不需要,iC个人又解:



最小正周期为$\pi$,$f\left(\dfrac {2\pi}3\right)_\min(=-A)$,

则$x=\dfrac {2\pi}3$为$f(x)$的对称轴,则与其紧相邻从左至右的另三条对称轴为 \[x=-\frac {5\pi}6,-\frac \pi3,\frac \pi6.\]

且$\left(\dfrac \pi6,\dfrac {2\pi}3\right)$为其递减区间,于是$\left(-\dfrac \pi3,\dfrac \pi6 \right)$为其递增区间



“排排坐” \[-\frac {5\pi}6<-2<-\frac \pi3<0<\frac \pi6<2<\frac {2\pi}3.\]


由对称性,从对称轴"强制"将变量转化到同一单调区间上:\[f(-2)=f\left(-\frac \pi3 \cdot 2+2\right)=f\left(\frac {6-2\pi}3\right) .\]

\[f(2)=f\left(\frac \pi6 \cdot 2-2\right)=f\left(\frac {\pi-6}3\right) .\]

再排一下:\[-\frac \pi3<\frac {\pi-6}3<\frac {6-2\pi}3<0<\frac \pi6.\]

也就是说明了\[f(2)=f\left(\frac {\pi-6}3\right)<f\left(\frac {6-2\pi}3\right)=f(-2)<f(0).\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-6-7 18:46
当然,iC借助粗略图象来写的区间,及采用哪条对称轴了……这肯定要数形结合的……

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-7 19:19
这里有安徽的全部试题:
安徽理科:blog.sina.com.cn/s/blog_54df069f0102vk84.html
安徽文科:blog.sina.com.cn/s/blog_54df069f0102vk85.html

4

Threads

9

Posts

72

Credits

Credits
72

Show all posts

渔舟 Posted 2015-6-8 10:51
向阿K这样的数学爱好者点赞

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-8 15:55
看哪个数离最近的最低点近,越近越小;或看哪个数离最近的最高点近,越近越大。

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit