Forgot password?
 Register account
View 2400|Reply 7

[数列] 数列极限

[Copy link]

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted 2013-10-2 15:05 |Read mode
Last edited by reny 2013-10-3 16:23(USA NIMO 2013)记$H_{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}(n\in N^{*})$,求$\sum_{n=4}^{\infty}\dfrac{1}{n H_{n}H_{n-1}}$.

3

Threads

8

Posts

57

Credits

Credits
57

Show all posts

szl6208 Posted 2013-10-2 15:18
利用关系式:
\[\frac{1}{n} = {H_n} - {H_{n - 1}}\]
不难求出.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-2 15:20
没难度啊
\[\frac1{nH_nH_{n-1}}=\frac{H_n-H_{n-1}}{H_nH_{n-1}}=\frac1{H_{n-1}}-\frac1{H_n}\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-2 15:21
嘿,慢了一点……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-2 15:59
回复 4# kuing
两分钟之差,都在打公式,说明英雄所见略同,
楼主$H_n$定义错了吧?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-2 16:00
回复 5# 其妙

那个显然手误,懒得提出……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-2 16:03
回复 6# kuing
是的,
楼主的意思是要证明这个级数是发散的吧?$H_{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}(n\in N^{*})$
要不这么简单就搞定了。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-2 16:05
回复 7# 其妙

这个熟知的就更加不用证了吧……

Mobile version|Discuz Math Forum

2025-6-6 02:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit