Forgot password?
 Create new account
View 2265|Reply 7

[数列] 数列极限

[Copy link]

19

Threads

25

Posts

253

Credits

Credits
253

Show all posts

reny Posted at 2013-10-2 15:05:38 |Read mode
Last edited by reny at 2013-10-3 16:23:00(USA NIMO 2013)记$H_{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}(n\in N^{*})$,求$\sum_{n=4}^{\infty}\dfrac{1}{n H_{n}H_{n-1}}$.

3

Threads

8

Posts

57

Credits

Credits
57

Show all posts

szl6208 Posted at 2013-10-2 15:18:52
利用关系式:
\[\frac{1}{n} = {H_n} - {H_{n - 1}}\]
不难求出.

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-2 15:20:41
没难度啊
\[\frac1{nH_nH_{n-1}}=\frac{H_n-H_{n-1}}{H_nH_{n-1}}=\frac1{H_{n-1}}-\frac1{H_n}\]

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-2 15:21:17
嘿,慢了一点……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-2 15:59:03
回复 4# kuing
两分钟之差,都在打公式,说明英雄所见略同,
楼主$H_n$定义错了吧?

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-2 16:00:18
回复 5# 其妙

那个显然手误,懒得提出……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-2 16:03:15
回复 6# kuing
是的,
楼主的意思是要证明这个级数是发散的吧?$H_{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}(n\in N^{*})$
要不这么简单就搞定了。

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-2 16:05:56
回复 7# 其妙

这个熟知的就更加不用证了吧……

手机版Mobile version|Leisure Math Forum

2025-4-21 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list