|
Author |
isee
Posted 2015-6-14 13:59
Last edited by isee 2015-6-14 17:32回复 2# isee
首先,这道求和,在求的时候很容易弄成$\displaystyle\sum_{k=0}^{12}(\vec a_k\cdot \vec a_{k+1})$,因为前面是12,哈哈……
偶真是没啥好办法,要用到了积化和差:
\begin{align*}
\vec {a_k}\cdot \vec {a_{k+1}}&=\left(\cos \frac {k\pi}6,\sin \frac {k\pi}6+\cos \frac {k\pi}6\right) \cdot \left(\cos \frac {(k+1)\pi}6,\sin \frac {(k+1)\pi}6+\cos \frac {(k+1)\pi}6\right)\\
&=\cos \frac {k\pi}6 \cdot \cos \frac {(k+1)\pi}6+\left(\sin \frac {k\pi}6+\cos \frac {k\pi}6\right)\cdot \left(\sin \frac {(k+1)\pi}6+\cos \frac {(k+1)\pi}6\right)\\
&=\cos \frac {k\pi}6 \cdot \cos \frac {(k+1)\pi}6+\sqrt 2\sin\left(\frac {k\pi}6+\frac \pi4\right)\cdot \sqrt 2 \sin \left(\frac {(k+1)\pi}6+\frac \pi4\right)\\
&=\frac 12 \cos \left(\frac {k\pi}3 +\frac \pi6\right) + \frac 12\cos \left(-\frac \pi6 \right)-\cos \left(\frac {k\pi}3+\frac \pi2+\frac \pi6\right)+ \cos \left(-\frac \pi6 \right)\\
&=\frac 12 \cos \left(\frac {k\pi}3 +\frac \pi6\right)+ \sin \left(\frac {k\pi}3+\frac \pi6\right)+\frac 32 \cos \frac \pi6.
\end{align*}
容易知道恒等式\[\sum_{k=0}^{11}\cos \left(\frac {k\pi}3 +\frac \pi6\right)=0,\sum_{k=0}^{11}\sin \left(\frac {k\pi}3+\frac \pi6\right)=0.\]
于是 \[\sum_{k=0}^{11}(\vec a_k\cdot \vec a_{k+1})=12\cdot \frac 32 \cos \frac \pi6=9\sqrt 3.\] |
|