Forgot password?
 Register account
View 2193|Reply 5

[函数] 2015年江苏卷第14题:三角求和

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-6-14 13:50 |Read mode
Last edited by hbghlyj 2025-4-6 22:062015年江苏卷第14题:
设向量$\vec a_k=\left(\cos \frac {k\pi}6,\sin \frac {k\pi}6+\cos \frac {k\pi}6\right)(k=0,1,2,\cdots,12)$,则$\displaystyle\sum_{k=0}^{11}(\vec a_k\cdot \vec a_{k+1})$的值为______。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-6-14 13:59
Last edited by isee 2015-6-14 17:32回复 2# isee


    首先,这道求和,在求的时候很容易弄成$\displaystyle\sum_{k=0}^{12}(\vec a_k\cdot \vec a_{k+1})$,因为前面是12,哈哈……


   偶真是没啥好办法,要用到了积化和差:

  \begin{align*}
  \vec {a_k}\cdot \vec {a_{k+1}}&=\left(\cos \frac {k\pi}6,\sin \frac {k\pi}6+\cos \frac {k\pi}6\right) \cdot \left(\cos \frac {(k+1)\pi}6,\sin \frac {(k+1)\pi}6+\cos \frac {(k+1)\pi}6\right)\\
&=\cos \frac {k\pi}6 \cdot \cos \frac {(k+1)\pi}6+\left(\sin \frac {k\pi}6+\cos \frac {k\pi}6\right)\cdot \left(\sin \frac {(k+1)\pi}6+\cos \frac {(k+1)\pi}6\right)\\
&=\cos \frac {k\pi}6 \cdot \cos \frac {(k+1)\pi}6+\sqrt 2\sin\left(\frac {k\pi}6+\frac \pi4\right)\cdot \sqrt 2 \sin \left(\frac {(k+1)\pi}6+\frac \pi4\right)\\
&=\frac 12 \cos \left(\frac {k\pi}3 +\frac \pi6\right) + \frac 12\cos \left(-\frac \pi6 \right)-\cos \left(\frac {k\pi}3+\frac \pi2+\frac \pi6\right)+ \cos \left(-\frac \pi6 \right)\\
&=\frac 12 \cos \left(\frac {k\pi}3 +\frac \pi6\right)+ \sin \left(\frac {k\pi}3+\frac \pi6\right)+\frac 32 \cos \frac \pi6.
  \end{align*}


容易知道恒等式\[\sum_{k=0}^{11}\cos \left(\frac {k\pi}3 +\frac \pi6\right)=0,\sum_{k=0}^{11}\sin \left(\frac {k\pi}3+\frac \pi6\right)=0.\]

于是 \[\sum_{k=0}^{11}(\vec a_k\cdot \vec a_{k+1})=12\cdot \frac 32 \cos \frac \pi6=9\sqrt 3.\]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2015-6-14 14:07
数量积的几何意义好做些吧。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-6-14 14:46
回复 4# 郝酒


    有没有愿意写过程的朋友。

    请教。

     偶不知江苏(高考要求)学和差化积,不过,在偶这里早只是竞赛里的东东啦。

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2015-6-14 15:32
回复 5# isee

注意到
$$\vec{a_{k+3}} = \left(\cos\frac{(k+3)\pi}{6},\cos\frac{(k+3)\pi}{6}+\sin\frac{(k+3)\pi}{6}\right) = \left(-\sin\frac{k\pi}{6},\cos\frac{k\pi}{6}-\sin\frac{k\pi}{6}\right)$$
所以$$\vec{a_k}\cdot\vec{a_{k+1}}+\vec{a_{k+3}}\cdot\vec{a_{k+4}}=2\cos\alpha_k\cos\alpha_{k+1}+\sin\alpha_k\sin\alpha_{k+1}+\sin\alpha_k\cos\alpha_{k+1}+\cos\alpha_k\sin\alpha_{k+1}+2\sin\alpha_k\sin\alpha_{k+1}+\cos\alpha_k\cos\alpha_{k+1}-\sin\alpha_k\cos\alpha_{k+1}-\cos\alpha_k\sin\alpha_{k+1}=3\cos\alpha_k\cos\alpha_{k+1}+\sin\alpha_k\sin\alpha_{k+1}=3\cos\frac{\pi}{6}=\frac{3\sqrt{3}}{2}$$
$$2\sum = 12\times\frac{3\sqrt{3}}{2}$$
$$\sum = 9\sqrt{3}$$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2015-6-14 17:51
Last edited by isee 2015-6-14 18:06回复 6# 郝酒


    学习了,易看代码(加了个括号)

\begin{align*}
\vec{a_k}\cdot\vec{a_{k+1}}+\vec{a_{k+3}}\cdot\vec{a_{k+4}}&=2\cos\alpha_k\cos\alpha_{k+1}+\sin\alpha_k\sin\alpha_{k+1}+\sin\alpha_k\cos\alpha_{k+1}+\cos\alpha_k\sin\alpha_{k+1}\\
&\ \ \ \ +2\sin\alpha_k\sin\alpha_{k+1}+\cos\alpha_k\cos\alpha_{k+1}-\sin\alpha_k\cos\alpha_{k+1}-\cos\alpha_k\sin\alpha_{k+1}\\
&=3(\cos\alpha_k\cos\alpha_{k+1}+\sin\alpha_k\sin\alpha_{k+1})\\
&=3\cos\frac{\pi}{6}=\frac{3\sqrt{3}}{2}
\end{align*}

而\[\sum_{k=0}^{11}(\vec a_k\cdot \vec a_{k+1})=\sum_{k=0}^{2}(\vec{a_k}\cdot\vec{a_{k+1}}+\vec{a_{k+3}}\cdot\vec{a_{k+4}})+\sum_{j=6}^{8}(\vec{a_j}\cdot\vec{a_{j+1}}+\vec{a_{j+3}}\cdot\vec{a_{j+4}})=6\cdot \frac{3\sqrt{3}}{2}=9\sqrt 3\]

Mobile version|Discuz Math Forum

2025-5-31 11:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit