Forgot password?
 Register account
View 2355|Reply 6

[不等式] 来自人教群的似曾相识的三元轮换不等式

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-17 22:30 |Read mode
鲁Q爱好者昵称(7868*****)  19:19:13
QQ图片20150617222645.png
@粤A爱好者kuing✈  有何简法
以前好像见过,也可能只是类似,没想出什么简法。
鉴于当 abc=1 时是恒等式,所以就由这里入手,求导玩。

设 $abc=m$,则
\begin{align*}
& \frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca} \\
={}& \frac{ca}{c+ca+m}+\frac{m}{ca+m+mc}+\frac{c}{1+c+ca} \\
={}& \frac{ca}{c+ca+m}+\frac{1}{1+c}\left( 1-\frac{ca}{ca+m+mc} \right)+\frac{c}{1+c+ca} \\
={}& f(m),
\end{align*}
求导即得
\[f'(m)=-\frac{ca}{(c+ca+m)^2}+\frac{ca}{(ca+m+mc)^2},\]
可见当 $0<m<1$ 时 $f'(m)>0$,当 $m>1$ 时 $f'(m)<0$,故 $f(m)\leqslant f(1)=1$。

你们也来玩玩。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2015-6-17 22:54
注:其实直接对任意一个变量求导来做都是差不多的,我整个m出来是为了更加一目了然 些。

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-6-19 21:45
当 abc=1 时是恒等式,这个是通分化简吗?还是有简单方法

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2015-6-19 21:48
回复 3# hjfmhh

第二行的m变成1就知道了

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-6-19 21:56
回复 4# 爪机专用
    $ac/(c+a+1)+ab/(a+ab+1)+bc/(b+bc+1)$
    $=a/(1+a+ab)+b/(1+b+bc)+c/(1+c+ca)$
    $=1/(bc+1+b)+1/(ac+1+c)+1/(ab+1+a)$
是这三个式子相加吧

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2015-6-20 00:08
当 abc=1 时是恒等式,这个是通分化简吗?还是有简单方法
hjfmhh 发表于 2015-6-19 21:45
\begin{align*}
& \frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca} \\  
={}& \frac{ca}{c+ca+\color{red}m}+\frac{\color{red}m}{ca+\color{red}m+\color{red}mc}+\frac{c}{1+c+ca}
\end{align*}
这几个m是1的话还不显然=1吗?

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2015-6-20 20:44
嗯,谢谢kuing

Mobile version|Discuz Math Forum

2025-5-31 11:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit