Forgot password?
 Register account
View 1983|Reply 2

[数列] Fibonacci数列的方幂和

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2015-6-22 16:43 |Read mode
\[\sum_{i=1}^{n}{Fibonacci[ i]}=Fibonacci[n+2]-1\]
\[\sum_{i=1}^{n}{Fibonacci^{2}[ i]}=Fibonacci[n]Fibonacci[n+1]\]
\[\sum_{i=1}^{n}{Fibonacci^{3}[ i]}=\frac{Fibonacci[3n+2]+6(-1)^{n+1}Fibonacci[n-1]+5}{10}\]
\[\sum_{i=1}^{n}{Fibonacci^{4}[ i]}=?\]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-6-22 16:45
搞得那么复杂

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

 Author| 青青子衿 Posted 2015-6-23 16:54
Last edited by 青青子衿 2015-6-23 17:12回复 0# kuing
回复 2# 其妙
\[\sum_{i=1}^{n}{Fibonacci^{4}[ i]}=\frac{Fibonacci[4n+2]+4(-1)^{n+1}Fibonacci[2n+1]+6n+3}{25}\]
搜狗截图20150623170655.png
来源:
斐波纳契数列与黄金比率的公式:
maths.surrey.ac.uk/hosted-sites/R.Knott/Fibon … ae.html#section2.4.2
递推关系和生成函数:
maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/LRGF.html

斐波那契数列的五次方幂和?
\[\sum_{i=1}^{n}{Fibonacci^{5}[ i]}=?\]

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit