Forgot password?
 Register account
View 2275|Reply 5

[几何] 不建系能解吗?

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2015-6-25 17:52 |Read mode
Last edited by hbghlyj 2025-3-20 04:15有解答是建系解决的,不建系能解吗? 向量.png
(2014•金华模拟)如图,已知:$|\mathrm{AC}|=|\mathrm{BC}|=4, \angle \mathrm{ACB}=90^{\circ}$ , M 为 $B C$ 的中点,$D$ 为以 $A C$ 为直径的圆上一动点,则 $\overrightarrow{A M} \cdot \overrightarrow{D C}$ 的最大值是 $8+4 \sqrt{5}$ .

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-6-25 19:03
用几何意义呗,如图,$N$ 为 $AC$ 中点,$D$, $E$ 关于 $N$ 对称,$NF\px AM$ 且 $FH\perp AM$ 于 $H$。
QQ截图20150625185845.gif
$\vv{DC}\cdot\vv{AM}=\vv{AE}\cdot\vv{AM}$,由数量积的几何意义知,当 $E$ 到达 $F$ 时取最大值为 $AH\cdot AM$。
易见 $AM=2\sqrt5$, $AH=NF+AN\cos\angle CAM=2+4/\sqrt5$,故最大值为 $4\sqrt5+8$。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2015-6-25 19:36
$t=\angle DCA$
$\vec{DC}=(|\vec{AC}|\cos^2{t})\dfrac{\vec{AC}}{|\vec{AC}|}+(|\vec{AC}|\sin{t}\cos{t})\dfrac{\vec{CB}}{|\vec{CB}|}=\cos^2{t}\vec{AC}-\sin{t}\cos{t}\vec{BC}$
$\vec{AM}=\dfrac{1}{2}\vec{AC}+\dfrac{1}{2}\vec{AB}=\vec{AC}+\dfrac{1}{2}\vec{BC}$
$\vec{AC}\cdot\vec{BC}=0$
$\vec{DC}\cdot\vec{AM}=16\cos^2{t}-8\sin{t}\cos{t}$

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2015-6-25 21:41
回复 2# kuing


    赞一个,想到几何意义了,但没深入下去。

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2015-6-25 21:43
回复 3# tommywong


    漂亮!

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-26 14:42
未命名.JPG

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit