Forgot password?
 Register account
View 5423|Reply 7

[几何] 三角形的重心、内心连线与一边平行、垂直的充要条件

[Copy link]

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2015-7-3 10:13 |Read mode
$\triangle ABC$ 的重心为 $G$,内心为 $I$,则 $GI$ 平行于 $BC$ 的充要条件是 $AB+AC=2BC$,$GI$ 垂直于 $BC$ 的充要条件是 $AB=AC$ 或 $AB+AC=3BC$。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2015-7-4 08:20
发一位网友的解答,经过他以前的多次讲解,第一题现在看得懂了。第二题对我来说还是有难度,不懂。
20150704081702.png

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-4 17:44
回复 2# abababa
这个“maven”是平面几何大牛!以前在人教论坛常出现

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-7-6 01:26
回复 3# 其妙
他的题我都不敢碰

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2015-7-6 08:02
回复 3# 其妙


    射影几何 厉害,或者说非欧几何中,厉害,厉害,厉害,重要的事要说三次。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

 Author| hejoseph Posted 2015-7-6 10:18
是用重心坐标,但也不用使用行列式的,例如平行,有向面积相等就行,就相当于
\[
\frac{1}{3}=\frac{a}{a+b+c}
\]
立即就得到那个式子了,垂直的话用向量内积等于 0 就可以了

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-7-6 22:23
当然,何版也很厉害!立体几何更是无人能及!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-5-3 17:25
刚才人教群里撸了垂直的,搜索发现这里也有,顺便存个代码。
鄂D山羊无角 2021/5/3 7:22:11
三角形ABC的重心为G,内心为I,若a+b=3c,求证:GI垂直于AB.
\begin{align*}
\vv{CG}&=\frac{\vv{CA}+\vv{CB}}3\\
\vv{CI}&=\frac{a\vv{CA}+b\vv{CB}}{a+b+c}\\
\vv{IG}&=\vv{CG}-\vv{CI}=\frac{(b+c-2a)\vv{CA}+(c+a-2b)\vv{CB}}{3(a+b+c)},
\end{align*}\begin{align*}
GI\perp AB&\iff\bigl( (b+c-2a)\vv{CA}+(c+a-2b)\vv{CB} \bigr)\cdot\bigl(\vv{CA}-\vv{CB}\bigr)=0\\
&\iff(b+c-2a)b^2-(c+a-2b)a^2+(3a-3b)\vv{CA}\cdot\vv{CB}=0\\
&\iff(a+b+c)(b^2-a^2)+3ab(a-b)+3(a-b)\frac{a^2+b^2-c^2}2=0\\
&\iff\frac12(a-b)(a+b-3c)(a+b+c)=0.
\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit