|
kuing
Posted 2021-5-3 17:25
刚才人教群里撸了垂直的,搜索发现这里也有,顺便存个代码。
鄂D山羊无角 2021/5/3 7:22:11
三角形ABC的重心为G,内心为I,若a+b=3c,求证:GI垂直于AB. \begin{align*}
\vv{CG}&=\frac{\vv{CA}+\vv{CB}}3\\
\vv{CI}&=\frac{a\vv{CA}+b\vv{CB}}{a+b+c}\\
\vv{IG}&=\vv{CG}-\vv{CI}=\frac{(b+c-2a)\vv{CA}+(c+a-2b)\vv{CB}}{3(a+b+c)},
\end{align*}\begin{align*}
GI\perp AB&\iff\bigl( (b+c-2a)\vv{CA}+(c+a-2b)\vv{CB} \bigr)\cdot\bigl(\vv{CA}-\vv{CB}\bigr)=0\\
&\iff(b+c-2a)b^2-(c+a-2b)a^2+(3a-3b)\vv{CA}\cdot\vv{CB}=0\\
&\iff(a+b+c)(b^2-a^2)+3ab(a-b)+3(a-b)\frac{a^2+b^2-c^2}2=0\\
&\iff\frac12(a-b)(a+b-3c)(a+b+c)=0.
\end{align*} |
|