Forgot password
 Register account
View 2059|Reply 2

[函数] $f(x)=\abs{x^2+4 x-3}$,$f(a)=f(b)$,求 $a+b+a b$ 的取值范围

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-7-10 18:42 |Read mode
Last edited by hbghlyj 2025-6-2 04:42已知函数 $f(x)=\abs{x^2+4 x-3}$,满足 $a<b<-2$,且 $f(a)=f(b)$,求 $a+b+a b$ 的取值范围

解法一:$(a+2)^2+(b+2)^2=14$,则 $\mathrm{a}=\sqrt{14} \cos \alpha-2, b=\sqrt{14} \sin \alpha-2, \alpha \in\left(\pi, \frac{5 \pi}{4}\right)$
$a+b+a b=14 \sin \alpha \cos \alpha-\sqrt{14}(\sin \alpha+\cos \alpha)$
令 $\sin \alpha+\cos \alpha=t \in(-\sqrt{2},-1), 2 \sin \alpha \cos \alpha=t^2-1$
$a+b+a b=7 t^2-\sqrt{14} t-7 \in(\sqrt{14}, 7+2 \sqrt{7})$
解法二:灵感来源于三角换元,直线 $y=t$ 与 $f(x)$ 的交点用 $t$ 表示 $a=-2-\sqrt{7+t}, b=-2-\sqrt{7-t}, t \in(0,7)$
$a+b+a b=\sqrt{7+t}+\sqrt{7-t}+\sqrt{49-t^2}$,接下来不知道,求指导

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-7-10 19:48
前面没看,只看了后面的式子
\[\sqrt{7+t}+\sqrt{7-t}+\sqrt{49-t^2}=\sqrt{14+2\sqrt{49-t^2}}+\sqrt{49-t^2}\]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-7-25 10:37
$a+b+ab+1=(a+1)(b+1)=xy$,$(x+1)^2+(y+1)^2=14$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:26 GMT+8

Powered by Discuz!

Processed in 0.012704 seconds, 23 queries