Forgot password
 Register account
View 2170|Reply 3

[不等式] 最值问题(西西)

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2015-8-5 23:29 |Read mode

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-9-14 19:05
39407f41181.png
\[\left\{4,\left\{a\to \frac{4}{3},b\to 1,c\to \frac{1}{3},d\to \frac{1}{3}\right\}\right\}\]
\[\left\{2+\sqrt{3},\left\{a\to 1,b\to 1,c\to 2-\sqrt{3},d\to 2-\sqrt{3}\right\}\right\}\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-5-16 15:28
这帖顶得真是时候,事关这恰好可以用上前些天我顶起的另一帖的结论:forum.php?mod=viewthread&tid=4005
仿照那帖中的巧妙柯西,有
\begin{align*}
3(a^2+b^2+c^2+d^2)&=(a+b+c+d)^2\\
&=\left(\frac{a+b+c}2+\frac{a+b+c}2+d\right)^2\\
&\leqslant3\left(\frac{(a+b+c)^2}4+\frac{(a+b+c)^2}4+d^2\right),
\end{align*}
得到
\[a^2+b^2+c^2\leqslant2ab+2bc+2ca,\]
分解为
\[\bigl(\sqrt a+\sqrt b+\sqrt c\bigr)\prod\bigl(\sqrt a+\sqrt b-\sqrt c\bigr)\geqslant0,\]
同理对其他任意三个变量均如此,也就是说 `\bigl\{\sqrt a,\sqrt b,\sqrt c,\sqrt d\bigr\}` 中任意两个元素之和不小于另一元素。

于是有 `\sqrt a\leqslant\sqrt c+\sqrt d\leqslant2\sqrt c`,得 `a/c\leqslant4`,当 `a=4/3`, `b=1`, `c=d=1/3` 取等。

这就解决了第一个,第二个还得想想,待续……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-5-16 15:40
第一个还可以这样:将已知等式配方为
\[\frac32(a-c-d)^2+\frac12(a-2b+c+d)^2=6cd,\]
得到
\begin{gather*}
(a-c-d)^2\leqslant4cd,\\
a\leqslant c+d+2\sqrt{cd},\\
\sqrt a\leqslant\sqrt c+\sqrt d\leqslant2\sqrt c\\
\frac ac\leqslant4.
\end{gather*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:58 GMT+8

Powered by Discuz!

Processed in 0.015780 seconds, 36 queries