|
其妙
Posted 2015-8-25 23:47
Last edited by hbghlyj 2025-5-21 06:59解:设 $c_1=\sqrt{a^2-b^2}, c_2=\sqrt{a^2+b^2}$,则相应点的坐标分别为 $F_1(-c_1, 0)$,$F_2(c_1, 0)$,$F_3(-c_2, 0)$,$F_4(c_2, 0)$,直线 $A B F_4$ 截 $\triangle C F_3 F_2$,由梅涅劳斯定理得 $\frac{C A}{A F_3} \cdot \frac{F_3 F_4}{F_4 F_2} \cdot \frac{F_2 B}{B C}=1$.
在 $\triangle C F_3 F_2$ 中,$A F_2, B F_3, C F_1$ 三线共点,由塞瓦定理得 $\frac{C A}{A F_3} \cdot \frac{F_3 F_1}{F_1 F_2} \cdot \frac{F_2 B}{B C}=1$.
\[
\therefore \frac{F_3 F_4}{F_1 F_2}=\frac{F_3 F_1}{F_1 F_2} \Rightarrow \frac{2 c_2}{c_2-c_1}=\frac{c_2-c_1}{2 c_1} \Rightarrow c_2=(3+2 \sqrt{2}) c_1 .\]\[\therefore a^2: b^2=3: 2 \sqrt{2}
\] |
|