Forgot password?
 Register account
View 1934|Reply 3

[几何] 三线共点

[Copy link]

6

Threads

17

Posts

149

Credits

Credits
149

Show all posts

yuzi Posted 2015-8-24 21:34 |Read mode
Last edited by hbghlyj 2025-5-21 07:44如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ($a>b>0$)的左右焦点为$F_1$、$F_2$,双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 左右焦点为$F_3$、$F_4$,过$F_4$任意作一条直线交椭圆于A、B两点(B在A、$F_4$之间),直线$F_3A$与$F_2B$相交于C点, 若直线$F_2A$、$F_3B$、$F_1C$ 相交于一点,求$\frac ab$的值

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2015-8-25 15:47
回复 1# yuzi
是不是用梅涅劳斯定理和塞瓦定理来做?
因为$\frac{F_3A}{AC}\frac{CB}{BF_2}\frac{F_2F_1}{F_1F_3}=1$
并且$\frac{F_3A}{AC}\frac{CB}{BF_2}\frac{F_2F_4}{F_4F_3}=1$
然后两式相除得$\frac{F_2F_1}{F_1F_3}\frac{F_4F_3}{F_2F_4}=1$
再代入焦点的坐标计算就是$\frac{2\sqrt{a^2-b^2}}{\sqrt{a^2+b^2}-\sqrt{a^2-b^2}}\frac{2\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}-\sqrt{a^2-b^2}}=1$
最后就是$\frac{a}{b}=\sqrt[4]{\frac{9}{8}}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-8-25 17:01
soga,我咋没想到经典平几定理……

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-8-25 23:47
Last edited by hbghlyj 2025-5-21 06:59解:设 $c_1=\sqrt{a^2-b^2}, c_2=\sqrt{a^2+b^2}$,则相应点的坐标分别为 $F_1(-c_1, 0)$,$F_2(c_1, 0)$,$F_3(-c_2, 0)$,$F_4(c_2, 0)$,直线 $A B F_4$ 截 $\triangle C F_3 F_2$,由梅涅劳斯定理得 $\frac{C A}{A F_3} \cdot \frac{F_3 F_4}{F_4 F_2} \cdot \frac{F_2 B}{B C}=1$.

在 $\triangle C F_3 F_2$ 中,$A F_2, B F_3, C F_1$ 三线共点,由塞瓦定理得 $\frac{C A}{A F_3} \cdot \frac{F_3 F_1}{F_1 F_2} \cdot \frac{F_2 B}{B C}=1$.
\[
\therefore \frac{F_3 F_4}{F_1 F_2}=\frac{F_3 F_1}{F_1 F_2} \Rightarrow \frac{2 c_2}{c_2-c_1}=\frac{c_2-c_1}{2 c_1} \Rightarrow c_2=(3+2 \sqrt{2}) c_1 .\]\[\therefore a^2: b^2=3: 2 \sqrt{2}
\]

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit