Forgot password?
 Register account
View 2267|Reply 3

[不等式] 三角函数最值

[Copy link]

6

Threads

17

Posts

149

Credits

Credits
149

Show all posts

yuzi Posted 2015-8-24 21:36 |Read mode
Last edited by hbghlyj 2025-3-10 19:49在 $\triangle A B C$ 中,
\[
\frac{\sin \frac{A}{2} \cdot \sin \frac{B}{2}+\sin \frac{B}{2} \cdot \sin \frac{C}{2}+\sin \frac{C}{2} \cdot \sin \frac{A}{2}}{\sin A+\sin B+\sin C}
\]
的最大值为$\boxed{\frac{\sqrt{3}}{6}}$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-8-25 01:47
根据三角恒等式
\[\sin A+\sin B+\sin C=4\cos \frac A2\cos \frac B2\cos \frac C2,\]

\begin{align*}
\text{原式} & =\frac14\sum\tan \frac A2\tan \frac B2\sec \frac C2 \\
& =\frac14\sum\tan \frac A2\tan \frac B2\sqrt{\tan ^2\frac C2+1} \\
& \leqslant \frac14\sqrt{\sum\tan \frac A2\tan \frac B2\sum\tan \frac A2\tan \frac B2\left( \tan ^2\frac C2+1 \right)} \\
& =\frac14\sqrt{\tan \frac A2\tan \frac B2\tan \frac C2\left( \tan \frac A2+\tan \frac B2+\tan \frac C2 \right)+1} \\
& \leqslant \frac14\sqrt{\frac13\left( \sum\tan \frac A2\tan \frac B2 \right)^2+1} \\
& =\frac{\sqrt3}6,
\end{align*}
当正三角形时取等。

6

Threads

17

Posts

149

Credits

Credits
149

Show all posts

 Author| yuzi Posted 2015-8-25 21:30
不等式渣。。。。好难

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-8-25 23:46
v6不是写了一个接发?

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit