Forgot password?
 Register account
View 2558|Reply 8

[数列] 数列与不等式

[Copy link]

11

Threads

29

Posts

229

Credits

Credits
229

Show all posts

nash Posted 2015-8-25 11:27 |Read mode
数列与不等式.png

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2015-8-25 18:46
第一题容易吧,$C=2$,然后用数学归纳法,当$n=1$时成立,假设直到当$n=k$时都有$a_k \le 2k^2$,当$n=k+1$时
$a_{k+1}=a_{k-1}+\frac{4}{k}a_k \le 2(k-1)^2+\frac{4}{k}2k^2=2(k+1)^2$,所以对任意$n$都成立
第二题不会,也想用数学归纳法,但没想出来

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2015-8-26 12:25
第二题也是用数学归纳法
当$n=1$时成立,假设当$n=k$时成立,即$a_{k+1}-a_k \le 4k+3$,当$n=k+1$时
$a_{k+2}-a_{k+1}=a_k+\frac{4}{k+1}a_{k+1}=a_k+\frac{3-k}{k+1}a_{k+1}$
根据归纳假设,$a_{k+1} \le a_k+4k+3$,所以$a_{k+2}-a_{k+1} \le a_k+\frac{3-k}{k+1}(a_k+4k+3)=\frac{(3-k)(4k+3)+4a_k}{k+1}$
再根据第一题,$a_k \le 2k^2$,所以$a_{k+2}-a_{k+1} \le \frac{(3-k)(4k+3)+4 \cdot 2k^2}{k+1}=\frac{4k^2+9k+9}{k+1}$
只要证明$\frac{4k^2+9k+9}{k+1} \le 4(k+1)+3$,作差就是证明$\frac{2(1-k)}{k+1} \le 0$,当$k>1$时显然成立,所以当$n=k+1$时都成立

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2015-8-26 20:19
回复 3# abababa
这楼做错了,当$3-k<0$时不能得出$\frac{3-k}{k+1}a_{k+1}\le\frac{3-k}{k+1}(a_k+4k+3)$

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2016-5-2 19:19
令$a_n=2n^2-b_n,c_n=b_{n+1}-b_n$

那么问题为$b_1=1,b_2=0,b_{n+1}=b_{n-1}+\frac{4}{n}b_n,求证: b_{n+1}-b_n\ge -1$.

由题意可得$\frac{n}{4}(b_{n+1}-b_{n-1})=b_n,$即$\frac{n}{4}(c_n+c_{n-1})=b_n$

又$\frac{n-1}{4}(c_{n-1}+c_{n-2})=b_{n-1}$

以上两式相减,得到$\frac{n}{4}c_n=\frac{3}{4}c_{n-1}+\frac{n-1}{4}c_{n-2}$

这下可以利用数学归纳法证明$c_n\ge 0,n\ge 2$.

如此证明了1楼问题.

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2016-5-2 20:37
回复 8# realnumber
谢谢,关键是$b_n$的设法,后面的正数列就好办了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-18 15:36
在某群看到的

QQ图片20160518153521.jpg
QQ图片20160518153528.jpg

还标了分值,看起来像是标答的样子

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2016-5-18 15:40
回复 7# kuing


    你更厉害,都找到评分标准了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-18 15:41
回复 8# isee

碰巧在某群看到而已,想起这帖,就搬运一下……

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit