Forgot password?
 Register account
View 1802|Reply 4

来自人教群的 $by/z+cz/y=a$ 等求 $a^3+b^3+c^3$

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-9-14 20:57 |Read mode
浙B爱好者T35(3705*****)  15:10:23
QQ图片20150914205136.jpg
由前两个等式可得
\[cz^2=ayz-by^2=bzx-ax^2,\]
整理得
\[a(x^2+yz)=b(y^2+zx),\]
同理
\[a(x^2+yz)=c(z^2+xy),\]
由以上两式代回条件的第一个等式中,得
\[\frac{x^2+yz}{y^2+zx}\cdot \frac yz+\frac{x^2+yz}{z^2+xy}\cdot \frac zy=1,\]
进一步可以整理为
\[\frac{x^2}{x^2+yz}+\frac{y^2}{y^2+zx}+\frac{z^2}{z^2+xy}=1,\]
令 $u=yz/x^2$, $v=zx/y^2$, $w=xy/z^2$,则 $uvw=1$,上式化为
\[\frac1{1+u}+\frac1{1+v}+\frac1{1+w}=1,\]
去分母化简为
\[u+v+w+1=0,\]
由以上结果以及 $abc=1$,得
\begin{align*}
a^3+b^3+c^3&=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab} \\
& =\sum\frac{(y^2+zx)(z^2+xy)}{(x^2+yz)^2} \\
& =\sum\frac{(1+v)(1+w)}{(vw+1)^2} \\
& =\sum\frac{vw-u}{(vw+1)^2} \\
& =\sum\frac{u^2(vw-u)}{(1+u)^2} \\
& =\sum\frac{u(1-u)}{1+u} \\
& =\sum\left( 2-u-\frac2{1+u} \right) \\
& =6-u-v-w-2\sum\frac1{1+u} \\
& =5.
\end{align*}

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2015-9-14 22:17
牛A<k神<牛C

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2015-9-14 23:01
回复 2# Tesla35

群里的解法不是更好咩

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2015-9-14 23:04
回复 3# 色k
已下载保存

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2015-9-15 00:22
回复 4# Tesla35

嗯,我也会撸起来

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit