|
存★在!!
Posted 2015-10-8 15:53
Last edited by hbghlyj 2025-4-10 01:01若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[0, \frac{1}{4}\right)$ ,则 $\left[4 ~m^2 \alpha\right]$ 是偶数,即 $n=2m$ ;
若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[\frac{1}{4}, \frac{5}{16}\right)$ ,则 $\left[16 m^2 \alpha\right]$ 是偶数;若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[\frac{5}{16}, \frac{21}{64}\right)$ ,则 $\left[64 ~m^2 \alpha\right]$ 是偶数;而 $\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots=\frac{1}{2}$ ;
若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[\frac{1}{2}, \frac{3}{4}\right)$ ,则 $\left[4 ~m^2 \alpha\right]$ 也是偶数;
$\dots$ |
|