Forgot password
 Register account
View 1723|Reply 2

[数论] 国庆接力

[Copy link]

72

Threads

96

Posts

0

Reputation

Show all posts

v6mm131 posted 2015-10-1 22:29 |Read mode
$\alpha >0$求证:存在无穷多个正整数$n$使得[$n^2\alpha $]是偶数

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2015-10-8 13:36
回复 1# v6mm131

若α为有理数,设小数点后有k位,那么n取足够大时,符合题意.
比如$n=10^t,t>k,t\in Z^+$.
若α为无理数,不会,继续想....
存★在!! posted 2015-10-8 15:53
Last edited by hbghlyj 2025-4-10 01:01若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[0, \frac{1}{4}\right)$ ,则 $\left[4 ~m^2 \alpha\right]$ 是偶数,即 $n=2m$ ;
若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[\frac{1}{4}, \frac{5}{16}\right)$ ,则 $\left[16 m^2 \alpha\right]$ 是偶数;若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[\frac{5}{16}, \frac{21}{64}\right)$ ,则 $\left[64 ~m^2 \alpha\right]$ 是偶数;而 $\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots=\frac{1}{2}$ ;
若 $\left[m^2 \alpha\right]$ 是奇数,且 $m^2 \alpha-\left[m^2 \alpha\right] \in\left[\frac{1}{2}, \frac{3}{4}\right)$ ,则 $\left[4 ~m^2 \alpha\right]$ 也是偶数;
$\dots$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:15 GMT+8

Powered by Discuz!

Processed in 0.039332 seconds, 23 queries