Forgot password
 Register account
View 2407|Reply 0

[几何] 来自人教群的正三角形内两内切圆半径比为2

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-10-21 21:33 |Read mode
浙B爱好者渣渣(3705*****)  21:03:16
QQ图片20151021213320.png
就硬算?

浙B爱好者渣渣(3705*****)  21:18:37
我硬算的
把俩圆半径算出来
QQ截图20151021213408.png
设 $BD=u$, $DC=v$, $AD=t$,由上图可知 $t^2=u^2+v^2+uv$,于是
\[2=\frac{r_C}{r_B}=\frac{\S{ACD}}{\S{ABD}}\cdot \frac{C_{\triangle ABD}}{C_{\triangle ACD}}=\frac vu\cdot \frac{2u+v+\sqrt{u^2+v^2+uv}}{u+2v+\sqrt{u^2+v^2+uv}},\]
解得
\[\frac uv=\frac{1+\sqrt{33}}{16},\]

\[\frac{BD}{AB}=\frac u{u+v}=\frac{1+\sqrt{33}}{17+\sqrt{33}}=\frac{-1+\sqrt{33}}{16}.\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 09:47 GMT+8

Powered by Discuz!

Processed in 0.012251 seconds, 25 queries