Forgot password
 Register account
View 1624|Reply 7

[不等式] 提个猜想,不知有没有人研究过

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-11-2 20:40 |Read mode
给定 $a$, $b>0$,设
\[x_n=\frac{\sqrt[n]{(a + nb)\bigl(2a + (n - 1)b\bigr) \cdots \bigl((n - 1)a + 2b\bigr)(na + b)}}{n + 1},\]
猜想:对任意 $n\inN^+$,有 $x_n\geqslant x_{n+1}$。

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2015-11-13 00:55
顶一下

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2015-12-3 00:27
虽然俺不懂,但俺还是可以帮忙顶一下的,顶心又顶肺

81

Threads

165

Posts

1

Reputation

Show all posts

APPSYZY posted 2022-4-25 12:35
由$\ln x$上凸,故对$x,y>0$以及$\lambda\in(0,1)$有
\[\lambda\ln x+(1-\lambda)\ln y\le\ln(\lambda x+(1-\lambda)y).\]
结合上述不等式,可得
\begin{align*}
\ln x_{n+1} &= \frac1{n+1}\sum_{k=1}^{n+1}\ln\frac{ka+(n+2-k)b}{n+2} \\
&= \frac1n\sum_{k=0}^n\left(\frac k{n+1}\ln\frac{(k+1)a+(n+1-k)b}{n+2}+\frac{n-k}{n+1}\ln\frac{(k+1)a+(n+1-k)b}{n+2}\right) \\
&= \frac1n\sum_{k=1}^n\left(\frac {n-k+1}{n+1}\ln\frac{ka+(n+2-k)b}{n+2}+\frac k{n+1}\ln\frac{(k+1)a+(n+1-k)b}{n+2}\right) \\
&\le\frac1n\sum_{k=1}^n\ln\frac{ka+(n+1-k)b}{n+1} \\
&=\ln x_n.
\end{align*}
因此得到$x_n\le x_{n+1}$对任意$n\in\mathbb{N}^+$成立.

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2022-4-25 12:38
回复 4# APPSYZY

thanks
zhihu.com/question/529811631/answer/2455995653
这个回答就是你?

81

Threads

165

Posts

1

Reputation

Show all posts

APPSYZY posted 2022-4-25 12:42
回复 5# kuing

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-4-25 17:19
回复 6# APPSYZY


擦,我是说写题的风格特别像 ptr ,能省绝对不多写~

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-4-25 17:20
回复 1# kuing


难怪我似乎曾见过的

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:54 GMT+8

Powered by Discuz!

Processed in 0.012185 seconds, 22 queries