|
hjnk900 发表于 2015-11-18 04:19
跟这道题相关的,还有一个小问也是做不出...
令 $ \epsilon>0 $. 证明存在函数 $ g: \mathbb R\to [0,1] $ 满足:
当 $ x≤0 $ 时, $ g(x)=0 $,
当 $ 0<x<\epsilon $ 时, $ g(x)\in(0,1) $,
当 $ x≥\epsilon $ 时, $ g(x)=1 $.
见Smooth transition functions
The function\[g(x)={\frac {f(x)}{f(x)+f(1-x)}},\qquad x\in \mathbb {R} ,\]has a strictly positive denominator everywhere on the real line, hence $g$ is also smooth. Furthermore, $g(x) = 0$ for $x ≤ 0$ and $g(x) = 1$ for $x ≥ 1$, hence it provides a smooth transition from the level $0$ to the level $1$ in the unit interval $[0, 1]$.
Mathematica- f[x_] := If[x <= 0, 0, Exp[-1/x]]
- Plot[f[x]/(f[x] + f[1 - x]), {x, -1/2, 3/2}]
Copy the Code |
|