Forgot password?
 Register account
View 1434|Reply 3

积分与偏导数

[Copy link]

6

Threads

7

Posts

73

Credits

Credits
73

Show all posts

hjnk900 Posted 2015-11-11 09:24 |Read mode
令 $g:\mathbb R^{2} \to \mathbb R^{2}, g(x)=(g_1(x),g_2(x))$ 连续可导.
令 $$f(x,y)=\int_0^xg_1(t,0)dt+\int_0^yg_2(x,s)ds$$
(1)证明 $D_2f(x,y)=g_2(x,y)$
(2)假设 $D_1g_2=D_2g_1$, 证明 $D_1f(x,y)=g_1(x,y)$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2015-11-11 14:00
回复 1# hjnk900


偏微分是\partial, 尼玛一个$D$看的劳资半天没反应过来

第一问显然
\[\frac{\partial f(x,y)}{\partial y}=0+g_2(x,y)=g_2(x,y)\]

因为
\[\frac{\partial}{\partial x}g_2(x,y)=\frac{\partial}{\partial y}g_1(x,y)\]

\[\frac{\partial f(x,y)}{\partial x}=g_1(x,0)+\int_0^y\frac{\partial}{\partial x}g_2(x,s)ds\]
\[=g_1(x,0)+\int_0^y\frac{\partial}{\partial s}g_1(x,s)ds\]
\[=g_1(x,0)+g_1(x,y)-g_1(x,0)=g_1(x,y)\]

6

Threads

7

Posts

73

Credits

Credits
73

Show all posts

 Author| hjnk900 Posted 2015-11-18 00:40
回复 2# 战巡

多谢战巡大哥!

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-2-27 04:47
回复 1# hjnk900

题目$g:\mathbb R^{2} \to \mathbb R^{2}$好像有错, 应该是$g:\mathbb R \to \mathbb R^{2}$

Mobile version|Discuz Math Forum

2025-6-5 19:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit