Forgot password?
 Create new account
View 1313|Reply 3

积分与偏导数

[Copy link]

6

Threads

7

Posts

73

Credits

Credits
73

Show all posts

hjnk900 Posted at 2015-11-11 09:24:26 |Read mode
令 $g:\mathbb R^{2} \to \mathbb R^{2}, g(x)=(g_1(x),g_2(x))$ 连续可导.
令 $$f(x,y)=\int_0^xg_1(t,0)dt+\int_0^yg_2(x,s)ds$$
(1)证明 $D_2f(x,y)=g_2(x,y)$
(2)假设 $D_1g_2=D_2g_1$, 证明 $D_1f(x,y)=g_1(x,y)$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2015-11-11 14:00:33
回复 1# hjnk900


偏微分是\partial, 尼玛一个$D$看的劳资半天没反应过来

第一问显然
\[\frac{\partial f(x,y)}{\partial y}=0+g_2(x,y)=g_2(x,y)\]

因为
\[\frac{\partial}{\partial x}g_2(x,y)=\frac{\partial}{\partial y}g_1(x,y)\]

\[\frac{\partial f(x,y)}{\partial x}=g_1(x,0)+\int_0^y\frac{\partial}{\partial x}g_2(x,s)ds\]
\[=g_1(x,0)+\int_0^y\frac{\partial}{\partial s}g_1(x,s)ds\]
\[=g_1(x,0)+g_1(x,y)-g_1(x,0)=g_1(x,y)\]

6

Threads

7

Posts

73

Credits

Credits
73

Show all posts

 Author| hjnk900 Posted at 2015-11-18 00:40:13
回复 2# 战巡

多谢战巡大哥!

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-27 04:47:59
回复 1# hjnk900

题目$g:\mathbb R^{2} \to \mathbb R^{2}$好像有错, 应该是$g:\mathbb R \to \mathbb R^{2}$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list