Forgot password
 Register account
View 1438|Reply 3

积分与偏导数

[Copy link]

6

Threads

7

Posts

0

Reputation

Show all posts

hjnk900 posted 2015-11-11 09:24 |Read mode
令 $g:\mathbb R^{2} \to \mathbb R^{2}, g(x)=(g_1(x),g_2(x))$ 连续可导.
令 $$f(x,y)=\int_0^xg_1(t,0)dt+\int_0^yg_2(x,s)ds$$
(1)证明 $D_2f(x,y)=g_2(x,y)$
(2)假设 $D_1g_2=D_2g_1$, 证明 $D_1f(x,y)=g_1(x,y)$

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2015-11-11 14:00
回复 1# hjnk900


偏微分是\partial, 尼玛一个$D$看的劳资半天没反应过来

第一问显然
\[\frac{\partial f(x,y)}{\partial y}=0+g_2(x,y)=g_2(x,y)\]

因为
\[\frac{\partial}{\partial x}g_2(x,y)=\frac{\partial}{\partial y}g_1(x,y)\]

\[\frac{\partial f(x,y)}{\partial x}=g_1(x,0)+\int_0^y\frac{\partial}{\partial x}g_2(x,s)ds\]
\[=g_1(x,0)+\int_0^y\frac{\partial}{\partial s}g_1(x,s)ds\]
\[=g_1(x,0)+g_1(x,y)-g_1(x,0)=g_1(x,y)\]

6

Threads

7

Posts

0

Reputation

Show all posts

original poster hjnk900 posted 2015-11-18 00:40
回复 2# 战巡

多谢战巡大哥!

3219

Threads

7838

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-2-27 04:47
回复 1# hjnk900

题目$g:\mathbb R^{2} \to \mathbb R^{2}$好像有错, 应该是$g:\mathbb R \to \mathbb R^{2}$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:20 GMT+8

Powered by Discuz!

Processed in 0.018569 seconds, 22 queries