Forgot password?
 Create new account
View 2348|Reply 10

[几何] 直线与圆

[Copy link]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

guanmo1 Posted at 2015-11-17 15:35:46 |Read mode
直线与圆.png 图中这道题是不是只能这么解?取这三条特殊直线后,得到的圆为什么刚好满足对任意m,均与直线相切,有深刻原因吗?

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2015-11-17 16:04:58
考虑 $l$ 到点 $(x_0,y_0)$ 的距离
\[d=\frac{\abs{2mx_0+(1-m^2)y_0-4m-4}}{\sqrt{4m^2+(1-m^2)^2}}
=\frac{\abs{-y_0m^2+(2x_0-4)m+y_0-4}}{1+m^2},\]
那么当 $2x_0-4=0$ 且 $-y_0=y_0-4$,即 $x_0=y_0=2$ 时 $d$ 恒为 $2$,所以定圆为 $(x-2)^2+(y-2)^2=4$。

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2015-11-17 16:07:42
当然,更一般的方法是用求包络线的那套方法……就不扯了……

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2015-11-17 16:36:39
回复 3# kuing

谢谢,我代入点到直线方程后,觉得繁就没看了。还是得耐心些。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2015-11-18 03:30:49
回复 1# guanmo1

包络线方便多了嘛
\[\begin{cases} 2mx+(1-m^2)y-4m-4=0 \\ \frac{\partial}{\partial m}(2mx+(1-m^2)y-4m-4)=0\end{cases}\]
第二个解得
\[m=\frac{x-2}{y}\]
带入第一个得到
\[\frac{(x-2)^2-4+(y-2)^2}{y}=0\]

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2015-11-18 10:55:04
回复 5# 战巡


PS. 你啥时候改下“带入”……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2015-11-18 14:39:11
回复  guanmo1

包络线方便多了嘛
\[\begin{cases} 2mx+(1-m^2)y-4m-4=0 \\ \frac{\partial}{\partial m}( ...
战巡 发表于 2015-11-18 03:30

    还是第一见从“量”上解决包络线。找资料学习去……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2015-12-14 21:42:54
回复  guanmo1

包络线方便多了嘛
\[\begin{cases} 2mx+(1-m^2)y-4m-4=0 \\ \frac{\partial}{\partial m}( ...
战巡 发表于 2015-11-18 03:30
代回后,我觉得是 $-(x-2)^2$与$y^2$啊,化成不楼上的答案。。。

方便 来算下,奇怪了,怎么都算不对了。。。。

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2015-12-16 16:35:23
回复 8# isee

检查多三遍

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2015-12-16 16:50:54
回复 9# kuing


    ,今天估计是查不出来了,明天吧。。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2015-12-16 19:37:58
哈哈,,,,,,的确是我算错了,,,,我也知道一定是我算错了,,,,

不过,巧的是,另外的两个人,也错了,正好错得和我一样儿一样儿,,,,


所以,我晕了。。。

这太是
巧合

手机版Mobile version|Leisure Math Forum

2025-4-21 19:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list