Forgot password?
 Register account
View 2189|Reply 1

[不等式] 来自人教群的 $2n$ 元不等式

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-12-4 22:51 |Read mode
粤B学生86鱼(1608******) 20:49:15
QQ图片20151204224720.jpg
\begin{align*}
& \sum_{i=1}^n\frac{a_ib_i}{s-a_i}\geqslant \frac2{n-1}\sum_{1\leqslant i<j\leqslant n}\sqrt{b_ib_j}-\frac{n-2}{n-1}\sum_{i=1}^nb_i \\
&\iff (n-1)\sum_{i=1}^n\frac{a_ib_i}{s-a_i}\geqslant 2\sum_{1\leqslant i<j\leqslant n}\sqrt{b_ib_j}-(n-2)\sum_{i=1}^nb_i \\
&\iff (n-1)\sum_{i=1}^n\left( \frac{a_ib_i}{s-a_i}+b_i \right)\geqslant 2\sum_{1\leqslant i<j\leqslant n}\sqrt{b_ib_j}+\sum_{i=1}^nb_i \\
&\iff (n-1)s\sum_{i=1}^n\frac{b_i}{s-a_i}\geqslant \left( \sum_{i=1}^n\sqrt{b_i} \right)^2 \\
&\iff \sum_{i=1}^n(s-a_i)\sum_{i=1}^n\frac{b_i}{s-a_i}\geqslant \left( \sum_{i=1}^n\sqrt{b_i} \right)^2,
\end{align*}
由柯西显然成立。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-12-5 22:37
回复 1# kuing
,

Mobile version|Discuz Math Forum

2025-5-31 11:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit