Forgot password
 Register account
View 2198|Reply 1

[不等式] 来自人教群的 $2n$ 元不等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2015-12-4 22:51 |Read mode
粤B学生86鱼(1608******) 20:49:15
QQ图片20151204224720.jpg
\begin{align*}
& \sum_{i=1}^n\frac{a_ib_i}{s-a_i}\geqslant \frac2{n-1}\sum_{1\leqslant i<j\leqslant n}\sqrt{b_ib_j}-\frac{n-2}{n-1}\sum_{i=1}^nb_i \\
&\iff (n-1)\sum_{i=1}^n\frac{a_ib_i}{s-a_i}\geqslant 2\sum_{1\leqslant i<j\leqslant n}\sqrt{b_ib_j}-(n-2)\sum_{i=1}^nb_i \\
&\iff (n-1)\sum_{i=1}^n\left( \frac{a_ib_i}{s-a_i}+b_i \right)\geqslant 2\sum_{1\leqslant i<j\leqslant n}\sqrt{b_ib_j}+\sum_{i=1}^nb_i \\
&\iff (n-1)s\sum_{i=1}^n\frac{b_i}{s-a_i}\geqslant \left( \sum_{i=1}^n\sqrt{b_i} \right)^2 \\
&\iff \sum_{i=1}^n(s-a_i)\sum_{i=1}^n\frac{b_i}{s-a_i}\geqslant \left( \sum_{i=1}^n\sqrt{b_i} \right)^2,
\end{align*}
由柯西显然成立。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2015-12-5 22:37
回复 1# kuing
,

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:55 GMT+8

Powered by Discuz!

Processed in 0.012961 seconds, 25 queries